Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1559-1570    DOI: 10.11900/0412.1961.2022.00455
  研究论文 本期目录 | 过刊浏览 |
巨磁致伸缩Fe-Ga合金薄带的抑制剂与二次再结晶行为
翟欣雅1, 和正华1(), 沙玉辉2, 朱晓飞3, 李锋1, 陈立佳1, 左良2,3
1 沈阳工业大学 材料科学与工程学院 沈阳 110870
2 东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819
3 中国科学院金属研究所 沈阳 110016
Inhibitor and Secondary Recrystallization Behavior of Giant Magnetostriction of Fe-Ga Thin Sheet
ZHAI Xinya1, HE Zhenghua1(), SHA Yuhui2, ZHU Xiaofei3, LI Feng1, CHEN Lijia1, ZUO Liang2,3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

翟欣雅, 和正华, 沙玉辉, 朱晓飞, 李锋, 陈立佳, 左良. 巨磁致伸缩Fe-Ga合金薄带的抑制剂与二次再结晶行为[J]. 金属学报, 2024, 60(11): 1559-1570.
Xinya ZHAI, Zhenghua HE, Yuhui SHA, Xiaofei ZHU, Feng LI, Lijia CHEN, Liang ZUO. Inhibitor and Secondary Recrystallization Behavior of Giant Magnetostriction of Fe-Ga Thin Sheet[J]. Acta Metall Sin, 2024, 60(11): 1559-1570.

全文: PDF(4900 KB)   HTML
摘要: 

利用二次再结晶获得择优织构是巨磁致伸缩Fe-Ga合金薄带研究的核心问题。本工作采用XRD、SEM、EBSD和TEM等分析技术研究了Fe-Ga合金薄带退火过程中织构、析出相和晶界特征演变规律,并探讨了Fe-Ga合金轧制薄带中二次再结晶Goss ({110}<001>)织构的形成机制。结果表明,初次再结晶织构由强γ织构和弱Goss织构组成,基体中弥散分布着高密度且尺寸为20~40 nm的MnS和NbC析出相。退火过程中析出相的粗化及其体积分数和密度的降低导致析出相对晶粒长大抑制力的减弱。初次再结晶到二次再结晶期间,Goss晶粒中析出相的密度始终低于γ晶粒。同时,二次再结晶前,无数量与尺寸优势的Goss晶粒被更多高能晶界所包围。Goss晶粒与基体晶粒间析出相和高能晶界特征的差异为Goss晶粒二次再结晶提供了充足驱动力,在未引入表面能条件下获得完善的二次再结晶组织,Fe-Ga合金薄带饱和磁致伸缩系数可高达250 × 10-6

关键词 Fe-Ga合金薄带二次再结晶织构磁致伸缩    
Abstract

The core issue in the study of giant magnetostriction of Fe-Ga alloy thin sheet is to obtain preferential texture through secondary recrystallization. In this work, the evolution of the texture, precipitation, and grain boundary characteristics of an Fe-Ga alloy thin sheet during the annealing process were investigated using XRD, SEM, EBSD, and TEM. The mechanism of the secondary recrystallization of the Goss ({110}<001>) texture in the Fe-Ga alloy thin sheet was analyzed. The results show that the primary recrystallized thin sheet is composed of strong γ-fibers and has a weak Goss texture. Moreover, high-density MnS and NbC precipitates of size 20-40 nm are dispersedly distributed in the matrix grains after primary recrystallization. The coarsening of the precipitates and a decrease in the volume fraction and density weaken the inhibiting force during the annealing process. The density of the precipitates inside the Goss grains is lower than that of the precipitates in the matrix grains with γ-texture during the process from primary recrystallization to secondary recrystallization. Before the occurrence of secondary recrystallization, Goss grains do not exhibit a number and size advantages over the matrix grains but are surrounded by higher-energy grain boundaries than the matrix grains. The differences between the Goss and matrix grains in terms of precipitation and high-energy grain boundary characteristics during primary recrystallization provide an additional driving force for the secondary recrystallization of Goss grains. Therefore, a perfect secondary recrystallization of the Goss texture with a saturation magnetostriction coefficient of 250 × 10‒6 is produced in the Fe-Ga alloy thin sheet without the introduction of the surface energy effect using a special annealing atmosphere.

Key wordsFe-Ga alloy    thin sheet    secondary recrystallization    texture    magnetostriction
收稿日期: 2022-09-13     
ZTFLH:  TG142.77  
基金资助:国家自然科学基金项目(52004164);国家自然科学基金项目(51931002);国家自然科学基金项目(51671049);辽宁省教育厅项目(LQGD2020013)
通讯作者: 和正华,hezhh@sut.edu.cn,主要从事新型磁致伸缩材料织构控制理论与技术研究
Corresponding author: HE Zhenghua, associate professor, Tel: (024)25496301, E-mail: hezhh@sut.edu.cn
作者简介: 翟欣雅,女,1998年生,硕士生
图1  二次冷轧和初次再结晶Fe-Ga合金薄带显微组织的SEM像与亚表层和中心层的恒φ2 = 45°取向分布函数(ODF)截面图
图2  Fe-Ga合金薄带初次再结晶析出相形貌的TEM像与EDS
图3  不同退火温度下Fe-Ga合金薄带中析出相的SEM像
图4  不同退火温度下Fe-Ga合金薄带中析出相尺寸分布
图5  Fe-Ga合金薄带在高温退火至不同温度时沿轧面的EBSD取向成像图
图6  Fe-Ga合金薄带在高温退火至不同温度时沿轧面恒φ2 = 45°的ODF截面图
图7  Fe-Ga合金薄带退火过程的磁致伸缩性能
图8  Fe-Ga合金薄带退火过程的析出相尺寸、体积分数与Zenner因子
图9  不同退火温度下晶粒EBSD取向成像图、主要取向晶粒内析出相的SEM像及析出相尺寸分布
图10  不同退火温度Fe-Ga合金薄带中主要取向晶粒内析出相的密度
图11  Fe-Ga合金薄带不同温度退火时基体与Goss晶粒的晶界特征分布
GBCD800oC850oC900oC950oC
MatrixGossMatrixGossMatrixGossMatrixGoss
< 15°23.016.622.817.221.415.919.716.9
HEGB42.651.543.352.744.155.445.664.4
> 45°34.431.933.930.134.528.734.718.7
表1  不同退火温度下Fe-Ga合金薄带的晶界体积分数 (%)
图12  Fe-Ga合金薄带中Goss晶粒的二次再结晶机制示意图(a) primary recrystallization (b) onset of secondary recrystallization (c) process of secondary recrystallization
1 Guruswamy S, Srisukhumbowornchai N, Clark A E, et al. Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga [J]. Scr. Mater., 2000, 43: 239
2 Kellogg R A, Russell A M, Lograsso T A, et al. Tensile properties of magnetostrictive iron-gallium alloys [J]. Acta Mater., 2004, 52: 5043
3 Fu Q, Sha Y H, Zhang F, et al. Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment [J]. Acta Mater., 2019, 167: 167
4 Ma T Y, Hu S S, Bai G H, et al. Structural origin for the local strong anisotropy in melt-spun Fe-Ga-Tb: Tetragonal nanoparticles [J]. Appl. Phys. Lett., 2015, 106: 112401
5 Srisukhumbowornchai N, Guruswamy S. Crystallographic textures in rolled and annealed Fe-Ga and Fe-Al alloys [J]. Metall. Mater. Trans., 2004, 35A: 2963
6 Na S M, Yoo J H, Flatau A B. Abnormal (110) grain growth and magnetostriction in recrystallized galfenol with dispersed niobium carbide [J]. IEEE Trans. Magn., 2009, 45: 4132
7 Li J H, Gao X X, Zhu J, et al. Texture and magnetostriction in rolled Fe-Ga alloy [J]. Acta Metall. Sin., 2008, 44: 1031
7 李纪恒, 高学绪, 朱 洁 等. 轧制Fe-Ga合金的织构及磁致伸缩 [J]. 金属学报, 2008, 44: 1031
8 He Z H, Sha Y H, Fu Q, et al. Secondary recrystallization and magnetostriction in binary Fe81Ga19 thin sheets [J]. J. Appl. Phys., 2016, 119: 123904
9 He Z H, Sha Y H, Shan N, et al. Secondary recrystallization Goss texture development in a binary Fe81Ga19 sheet induced by inherent grain boundary mobility [J]. Metals, 2019, 9: 1254
10 Sun A L, Liu J H, Jiang C B. Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments [J]. J. Mater. Sci., 2014, 49: 4565
11 Jiang L P, Yang J D, Hao H B, et al. Giant enhancement in the magnetostrictive effect of FeGa alloys doped with low levels of terbium [J]. Appl. Phys. Lett., 2013, 102: 222409
12 Na S M, Flatau A B. Single grain growth and large magnetostriction in secondarily recrystallized Fe-Ga thin sheet with sharp Goss (011)[100] orientation [J]. Scr. Mater., 2012, 66: 307
13 Na S M, Flatau A B. Global Goss grain growth and grain boundary characteristics in magnetostrictive galfenol sheets [J]. Smart Mater. Struct., 2013, 22: 125026
14 Yuan C, Li J H, Zhang W L, et al. Secondary recrystallization behavior in the rolled columnar-grained Fe-Ga alloys [J]. J. Magn. Magn. Mater., 2015, 391: 145
15 Yuan C, Li J H, Bao X Q, et al. Influence of annealing process on texture evolution and magnetostriction in rolled Fe-Ga based alloys [J]. J. Magn. Magn. Mater., 2014, 362: 154
16 Li J H, Zhang W L, Yuan C, et al. Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B, NbC) alloy sheets [J]. Rare Met., 2017, 36: 886
17 He Z H, Du H J, Sha Y H, et al. Secondary recrystallization texture and magnetostriction in Fe-Ga alloy ultra-thin sheet [J]. IEEE Trans. Magn., 2022, 58: 2501906
18 He Z H, Hao H B, Sha Y H, et al. Sharp secondary recrystallization and large magnetostriction in Fe81Ga19 sheet induced by composite nanometer-sized inhibitors [J]. J. Magn. Magn. Mater., 2019, 478: 109
19 Lei F, Sha Y H, He Z H, et al. Rapid secondary recrystallization of the Goss texture in Fe81Ga19 sheets using nanosized NbC particles [J]. Materials, 2021, 14: 3818
20 Liu Y Y, Li J H, Mu X, et al. Strong NbC particle pinning for promoting abnormal growth of Goss grain in Fe82Ga4.5Al13.5 rolled sheets [J]. J. Magn. Magn. Mater., 2017, 444: 364
21 Mao W M, Li Y, Guo W, et al. Influence of MnS particles inside grains on the boundary migration before secondary recrystallization of grain oriented electrical steels [J]. Solid State Phenom., 2010, 160: 247
22 Mao W M, An Z G, Li S X. Influence of MnS particles on the behaviors of grain boundary migration in Fe-3%Si alloys [J]. Chin. Sci. Bull., 2009, 54: 4537
23 He Z H, Du H J, Sha Y H, et al. Secondary recrystallization behavior in magnetostrictive Fe-Ga thin sheets induced by nano-sized composite precipitates [J]. AIP Adv., 2021, 11: 035313
24 Fu Q, Sha Y H, He Z H, et al. Recrystallization texture and magnetostriction in binary Fe81Ga19 sheets [J]. Acta Metall. Sin., 2017, 53: 90
24 付 全, 沙玉辉, 和正华 等. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能 [J]. 金属学报, 2017, 53: 90
25 Zhao L J, Tian X, Yao Z Q, et al. Enhanced magnetostrictive properties of lightly Pr-doped Fe83Ga17 alloys [J]. J. Rare Earths, 2020, 38: 257
26 He Z H, Sha Y H, Zhang F, et al. Development of strong η fiber recrystallization texture in rolled Fe81Ga19 thin sheet [J]. Metall. Mater. Trans., 2014, 45A: 129
27 Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J]. Acta Mater., 2003, 51: 3037
28 Dorner D, Zaefferer S, Raabe D. Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal [J]. Acta Mater., 2007, 55: 2519
29 Dorner D, Zaefferer S, Lahn L, et al. Overview of microstructure and microtexture development in grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2006, 304: 183
30 Samajdar I, Cicale S, Verlinden B, et al. Primary recrystallization in a grain oriented silicon steel: On the origin of Goss {110}<001> grains [J]. Scr. Mater., 1998, 39: 1083
31 Hayakawa Y, Szpunar J A. A new model of Goss texture development during secondary recrystallization of electrical steel [J]. Acta Mater., 1997, 45: 4713
32 Lin P, Palumbo G, Harase J, et al. Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3%Si alloy [J]. Acta Mater., 1996, 44: 4677
[1] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[2] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[3] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[4] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[8] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[9] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[12] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[13] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[14] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[15] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.