|
|
A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究 |
杨谨菡1, 闫海乐1( ), 刘昊轩1, 赵莹1, 杨一俏2, 赵骧1, 左良1 |
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2 东北大学 分析测试中心 沈阳 110819 |
|
Phase Stability, Magnetism, and Mechanical Properties of A2BTi: First-Principles Calculations and Experimental Studies |
YANG Jinhan1, YAN Haile1( ), LIU Haoxuan1, ZHAO Ying1, YANG Yiqiao2, ZHAO Xiang1, ZUO Liang1 |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Analytical and Testing Center, Northeastern University, Shenyang 110819, China |
引用本文:
杨谨菡, 闫海乐, 刘昊轩, 赵莹, 杨一俏, 赵骧, 左良. A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究[J]. 金属学报, 2024, 60(12): 1701-1709.
Jinhan YANG,
Haile YAN,
Haoxuan LIU,
Ying ZHAO,
Yiqiao YANG,
Xiang ZHAO,
Liang ZUO.
Phase Stability, Magnetism, and Mechanical Properties of A2BTi: First-Principles Calculations and Experimental Studies[J]. Acta Metall Sin, 2024, 60(12): 1701-1709.
1 |
Zuo L, Li Z B, Yan H L, et al. Texturation and functional behaviors of polycrystalline Ni-Mn-X phase transformation alloys [J]. Acta Metall. Sin., 2021, 57: 1396
|
1 |
左 良, 李宗宾, 闫海乐 等. 多晶Ni-Mn-X相变合金的织构化与功能行为 [J]. 金属学报, 2021, 57: 1396
|
2 |
Karaca H E, Karaman I, Basaran B, et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys——A new actuation mechanism with large work output [J]. Adv. Funct. Mater., 2009, 19: 983
|
3 |
Graf T, Felser C, Parkin S S P. Simple rules for the understanding of Heusler compounds [J]. Prog. Solid State Chem., 2011, 39: 1
|
4 |
Yan H L, Zhang Y D, Esling C, et al. Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization [J]. Acta Mater., 2021, 202: 112
|
5 |
Yan H L, Zhang Y D, Xu N, et al. Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys [J]. Acta Mater., 2015, 88: 375
|
6 |
Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
|
7 |
Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
|
8 |
Li Z, Xu C, Xu K, et al. Study of martensitic transformation and strain behavior in Ni50 - x Co x Mn39Sn11 (x = 0, 2, 4, 6) Heusler alloys [J]. Acta Metall. Sin., 2015, 51: 1010
|
8 |
李 哲, 徐 琛, 徐 坤 等. Ni50 - x Co x Mn39Sn11 (x = 0, 2, 4, 6) Heusler合金的马氏体相变和应变行为研究 [J]. 金属学报, 2015, 51: 1010
|
9 |
Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
|
10 |
Wei Z Y, Liu E K, Chen J H, et al. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases [J]. Appl. Phys. Lett., 2015, 107: 022406
|
11 |
Wei Z Y, Liu E K, Li Y, et al. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys [J]. Appl. Phys. Lett., 2016, 109: 071904
|
12 |
Wei Z Y, Sun W, Shen Q, et al. Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography [J]. Appl. Phys. Lett., 2019, 114: 101903
|
13 |
Yan H L, Wang L D, Liu H X, et al. Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies [J]. Mater. Des., 2019, 184: 108180
|
14 |
de Paula V G, Reis M S. All-d-metal full Heusler alloys: A novel class of functional materials [J]. Chem. Mater., 2021, 33: 5483
|
15 |
Liu S L, Xuan H C, Cao T, et al. Magnetocaloric and elastocaloric effects in all-d-metal Ni37Co9Fe4Mn35Ti15 magnetic shape memory alloy [J]. Phys. Status Solidi, 2019, 216A: 1900563
|
16 |
Aznar A, Gràcia-Condal A, Planes A, et al. Giant barocaloric effect in all-d-metal Heusler shape memory alloys [J]. Phys. Rev. Mater., 2019, 3: 044406
|
17 |
Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
|
18 |
Shen Y, Wei Z Y, Sun W, et al. Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys [J]. Acta Mater., 2020, 188: 677
doi: 10.1016/j.actamat.2020.02.045
|
19 |
Ni Z N, Ma Y X, Liu X T, et al. Electronic structure, magnetic properties and martensitic transformation in all-d-metal Heusler alloys Zn2 YMn (Y = Fe, Co, Ni, Cu) [J]. J. Magn. Magn. Mater., 2018, 451: 721
|
20 |
Liu K, Ma S C, Ma C C, et al. Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons [J]. J. Alloys Compd., 2019, 790: 78
|
21 |
Zhang F Q, Batashev I, van Dijk N, et al. Reduced hysteresis and enhanced giant magnetocaloric effect in B-doped all-d-metal Ni-Co-Mn-Ti-based Heusler materials [J]. Phys. Rev. Appl., 2022, 17: 054032
|
22 |
Taubel A, Beckmann B, Pfeuffer L, et al. Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: A combined experimental and theoretical study [J]. Acta Mater., 2020, 201: 425
|
23 |
Xiong C C, Bai J, Li Y S, et al. First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni-Mn-Ti alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1175
|
24 |
Sun X M, Cong D Y, Ren Y, et al. Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy [J]. Acta Mater., 2020, 183: 11
|
25 |
Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
|
26 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
27 |
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
|
28 |
Yan H L, Liu H X, Huang X M, et al. First-principles investigation of Mg substitution for Ga on martensitic transformation, magnetism and electronic structures in Ni2MnGa [J]. J. Alloys Compd., 2020, 843: 156049
|
29 |
Huang X M, Zhao Y, Yan H L, et al. A first-principle assisted framework for designing high elastocaloric Ni-Mn-based magnetic shape memory alloy [J]. J. Mater. Sci. Technol., 2023, 134: 151
|
30 |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
|
31 |
Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: General features [J]. Z. Kristallogr. Cryst. Mater., 2014, 229: 345
|
32 |
Grimvall G, Magyari-Köpe B, Ozoliņš V, et al. Lattice instabilities in metallic elements [J]. Rev. Mod. Phys., 2012, 84: 945
|
33 |
Yan H L, Zhao Y, Liu H X, et al. Ab-initio revelation on the origins of Ti substitution for Ga, Mn and Ni on ferromagnetism, phase stability and elastic properties in Ni2MnGa [J]. J. Alloys Compd., 2020, 821: 153481
|
34 |
Bhattacharya K, Conti S, Zanzotto G, et al. Crystal symmetry and the reversibility of martensitic transformations [J]. Nature, 2004, 428: 55
|
35 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
|
36 |
Nguyen-Manh D, Pettifor D G. Electronic structure, phase stability and elastic moduli of AB transition metal aluminides [J]. Intermetallics, 1999, 7: 1095
|
37 |
Mizutani U. Hume-Rothery rules for structurally complex alloy phases [J]. MRS Bull., 2012, 37: 169
|
38 |
Massalski T B, Laughlin D E. The surprising role of magnetism on the phase stability of Fe (Ferro) [J]. Calphad, 2009, 33: 3
|
39 |
Körmann F, Hickel T, Neugebauer J. Influence of magnetic excitations on the phase stability of metals and steels [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 77
|
40 |
Yan H L, Sánchez-Valdés C F, Zhang Y D, et al. Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50.0Mn35.25In14.75 melt-spun ribbons [J]. J. Alloys Compd., 2018, 767: 544
|
41 |
Yan H L, Zhao Y, Liu H X, et al. Occupation preferences and impacts of interstitial H, C, N, and O on magnetism and phase stability of Ni2MnGa magnetic shape memory alloys by first-principles calculations [J]. J. Appl. Phys., 2022, 131: 205101
|
42 |
Naohara T, Inoue A, Minemura T, et al. Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys [J]. Metall. Mater. Trans., 1982, 13A: 337
|
43 |
Liu H X, Yan H L, Jia N, et al. Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys [J]. J. Mater. Sci. Technol., 2022, 131: 1
|
44 |
Massalski T B, Mizutani U. Electronic structure of Hume-Rothery phases [J]. Prog. Mater. Sci., 1978, 22: 151
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|