Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1701-1709    DOI: 10.11900/0412.1961.2022.00412
  研究论文 本期目录 | 过刊浏览 |
A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究
杨谨菡1, 闫海乐1(), 刘昊轩1, 赵莹1, 杨一俏2, 赵骧1, 左良1
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2 东北大学 分析测试中心 沈阳 110819
Phase Stability, Magnetism, and Mechanical Properties of A2BTi: First-Principles Calculations and Experimental Studies
YANG Jinhan1, YAN Haile1(), LIU Haoxuan1, ZHAO Ying1, YANG Yiqiao2, ZHAO Xiang1, ZUO Liang1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Analytical and Testing Center, Northeastern University, Shenyang 110819, China
引用本文:

杨谨菡, 闫海乐, 刘昊轩, 赵莹, 杨一俏, 赵骧, 左良. A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究[J]. 金属学报, 2024, 60(12): 1701-1709.
Jinhan YANG, Haile YAN, Haoxuan LIU, Ying ZHAO, Yiqiao YANG, Xiang ZHAO, Liang ZUO. Phase Stability, Magnetism, and Mechanical Properties of A2BTi: First-Principles Calculations and Experimental Studies[J]. Acta Metall Sin, 2024, 60(12): 1701-1709.

全文: PDF(2213 KB)   HTML
摘要: 

探究新型磁性Heusler合金对于开发新一代智能传感材料具有重要的意义。本工作采用第一性原理计算对8种新型A2BTi型磁性功能合金,包括3种钴基合金(Co2MnTi、Co2FeTi和Co2NiTi)、3种铁基合金(Fe2MnTi、Fe2CoTi和Fe2NiTi)以及2种镍基合金(Ni2FeTi、Ni2CoTi),在四方晶格畸变过程中的相稳定性演化进行了理论计算,并对其L21相稳定性演变规律及背后机制进行了探讨。研究发现,价电子浓度和磁性是决定A2BTi型合金L21相结构稳定性的关键参数。针对理论计算筛选出的L21相为非最稳定结构的Co2NiTi、Fe2NiTi和Ni2CoTi,分别制备了合金样品并对其晶体结构、相变行为、磁性能、电阻和力学性能进行了实验研究。结果表明,室温下Co2NiTi由有序面心立方L12结构基体相和六方Co3Ti型第二相构成,Fe2NiTi由六方Fe2Ti型基体相和四方FeNi型第二相构成,Ni2CoTi为单一的Ni3Ti型六方结构。Co2NiTi、Fe2NiTi和Ni2CoTi均不存在一阶结构相变,这可能与其L21结构低的晶格稳定性致使其难以被形成有关。Fe2NiTi和Ni2CoTi具有较强的磁性且存在二阶Curie磁性转变。Fe2NiTi具有高的压缩强度(1280 MPa)、中等压缩应变(5%)及较大电阻(120 μΩ·cm),而Co2NiTi和Ni2CoTi具有优异的压缩塑性和较小的电阻,这3种合金不同的功能行为可能与其价电子浓度差异带来的化学键中金属键和共价键组分比例不同有关。

关键词 磁性功能材料磁性形状记忆合金Heusler合金马氏体相变第一性原理计算    
Abstract

Exploring novel magnetic Heusler alloys is of great significance for the development of a new generation of smart sensing materials. The A2BC type magnetic alloy, which comprises transition magnetic metal elements A and B and III-V main group element C (p-block element), has gained significant attention due to its various physical and chemical properties, including semimetallic magnetism, ferromagnetic shape memory effect, multicaloric effect, and superconductive effect. In this study, eight new A2BTi type magnetic functional alloys, including three Co-based alloys (Co2MnTi, Co2FeTi, and Co2NiTi), three Fe-based alloys (Fe2MnTi, Fe2CoTi, and Fe2NiTi), and two Ni-based alloys (Ni2FeTi and Ni2CoTi), were investigated for their phase stability against tetragonal distortion using first-principles calculation. The underlying mechanism for the stability of the L21 phase was discussed. The results show that valence electron concentration and magnetism are the key parameters in determining the structural stability of L21 phase in A2BTi type alloys. Co2NiTi, Fe2NiTi, and Ni2CoTi alloy samples, whose L21 structure is an unstable phase, were prepared, and their crystal structure, phase transformation, magnetic properties, electrical resistance, and mechanical properties were investigated experimentally. The results show that at 298 K, Co2NiTi is composed of an ordered face-centered cubic L12 structured matrix phase and a hexagonal Co3Ti-type second phase, Fe2NiTi is composed of a hexagonal Fe2Ti-type matrix phase and a tetragonal FeNi-type second phase, and Ni2CoTi has a single hexagonal Ni3Ti-type structure. The fact that no compound undergoes a first-order structural phase transition may be due to the weak stabilities of their L21 phases. Fe2NiTi and Ni2CoTi have strong magnetic properties and undergo a second-order Curie magnetic transition during cooling. Fe2NiTi has high compressive strength (1280 MPa), moderate compressive strain (5%), and large resistance (120 μΩ·cm), while Co2NiTi and Ni2CoTi have excellent compressive plasticity and small resistance. This phenomenon may be related to the different proportions of metallic and covalent bonding caused by the difference in valence electron concentration of the three alloys.

Key wordsmagnetic functional material    magnetic shape memory alloy    Heusler alloy    martensitic transformation    first-principles calculation
收稿日期: 2022-08-25     
ZTFLH:  TG139.6  
基金资助:中央高校基本科研业务费项目(N2202015);中央高校基本科研业务费项目(N2230002)
通讯作者: 闫海乐,yanhaile@mail.neu.edu.cn,主要从事相变功能材料的理论与实验研究
Corresponding author: YAN Haile, associate professor, Tel: 13909823853, E-mail: yanhaile@mail.neu.edu.cn
作者简介: 杨谨菡,女,1997年生,博士生
图1  Co2BTi (B = Mn、Fe和Ni)、Fe2BTi (B = Mn、Co和Ni)和Ni2BTi (B = Mn、Co和Fe)合金晶格总能量随着晶格四方畸变度c / a的变化曲线
ElementConfiguration of valence electronNumber of valence electron
Ti3d34s14
Mn3d64s17
Fe3d74s18
Co3d84s19
Ni3d94s110
表1  所研究元素的价电子配置及价电子数
图2  平均原子磁矩与平均价电子浓度分布图
图3  Co2NiTi、Fe2NiTi和Ni2CoTi室温XRD谱和背散射电子(BSE)像
图4  Co2NiTi、Fe2NiTi和Ni2CoTi合金磁化强度-温度(M(T))曲线以及DSC曲线
图5  Co2NiTi、Fe2NiTi和Ni2CoTi合金磁化强度随磁场强度变化(M(H))曲线、电阻及压缩曲线
1 Zuo L, Li Z B, Yan H L, et al. Texturation and functional behaviors of polycrystalline Ni-Mn-X phase transformation alloys [J]. Acta Metall. Sin., 2021, 57: 1396
1 左 良, 李宗宾, 闫海乐 等. 多晶Ni-Mn-X相变合金的织构化与功能行为 [J]. 金属学报, 2021, 57: 1396
2 Karaca H E, Karaman I, Basaran B, et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys——A new actuation mechanism with large work output [J]. Adv. Funct. Mater., 2009, 19: 983
3 Graf T, Felser C, Parkin S S P. Simple rules for the understanding of Heusler compounds [J]. Prog. Solid State Chem., 2011, 39: 1
4 Yan H L, Zhang Y D, Esling C, et al. Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization [J]. Acta Mater., 2021, 202: 112
5 Yan H L, Zhang Y D, Xu N, et al. Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys [J]. Acta Mater., 2015, 88: 375
6 Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
7 Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
8 Li Z, Xu C, Xu K, et al. Study of martensitic transformation and strain behavior in Ni50 - x Co x Mn39Sn11 (x = 0, 2, 4, 6) Heusler alloys [J]. Acta Metall. Sin., 2015, 51: 1010
8 李 哲, 徐 琛, 徐 坤 等. Ni50 - x Co x Mn39Sn11 (x = 0, 2, 4, 6) Heusler合金的马氏体相变和应变行为研究 [J]. 金属学报, 2015, 51: 1010
9 Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
10 Wei Z Y, Liu E K, Chen J H, et al. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases [J]. Appl. Phys. Lett., 2015, 107: 022406
11 Wei Z Y, Liu E K, Li Y, et al. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys [J]. Appl. Phys. Lett., 2016, 109: 071904
12 Wei Z Y, Sun W, Shen Q, et al. Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography [J]. Appl. Phys. Lett., 2019, 114: 101903
13 Yan H L, Wang L D, Liu H X, et al. Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies [J]. Mater. Des., 2019, 184: 108180
14 de Paula V G, Reis M S. All-d-metal full Heusler alloys: A novel class of functional materials [J]. Chem. Mater., 2021, 33: 5483
15 Liu S L, Xuan H C, Cao T, et al. Magnetocaloric and elastocaloric effects in all-d-metal Ni37Co9Fe4Mn35Ti15 magnetic shape memory alloy [J]. Phys. Status Solidi, 2019, 216A: 1900563
16 Aznar A, Gràcia-Condal A, Planes A, et al. Giant barocaloric effect in all-d-metal Heusler shape memory alloys [J]. Phys. Rev. Mater., 2019, 3: 044406
17 Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
18 Shen Y, Wei Z Y, Sun W, et al. Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys [J]. Acta Mater., 2020, 188: 677
doi: 10.1016/j.actamat.2020.02.045
19 Ni Z N, Ma Y X, Liu X T, et al. Electronic structure, magnetic properties and martensitic transformation in all-d-metal Heusler alloys Zn2 YMn (Y = Fe, Co, Ni, Cu) [J]. J. Magn. Magn. Mater., 2018, 451: 721
20 Liu K, Ma S C, Ma C C, et al. Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons [J]. J. Alloys Compd., 2019, 790: 78
21 Zhang F Q, Batashev I, van Dijk N, et al. Reduced hysteresis and enhanced giant magnetocaloric effect in B-doped all-d-metal Ni-Co-Mn-Ti-based Heusler materials [J]. Phys. Rev. Appl., 2022, 17: 054032
22 Taubel A, Beckmann B, Pfeuffer L, et al. Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: A combined experimental and theoretical study [J]. Acta Mater., 2020, 201: 425
23 Xiong C C, Bai J, Li Y S, et al. First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni-Mn-Ti alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1175
24 Sun X M, Cong D Y, Ren Y, et al. Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy [J]. Acta Mater., 2020, 183: 11
25 Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
26 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
27 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
28 Yan H L, Liu H X, Huang X M, et al. First-principles investigation of Mg substitution for Ga on martensitic transformation, magnetism and electronic structures in Ni2MnGa [J]. J. Alloys Compd., 2020, 843: 156049
29 Huang X M, Zhao Y, Yan H L, et al. A first-principle assisted framework for designing high elastocaloric Ni-Mn-based magnetic shape memory alloy [J]. J. Mater. Sci. Technol., 2023, 134: 151
30 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
31 Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: General features [J]. Z. Kristallogr. Cryst. Mater., 2014, 229: 345
32 Grimvall G, Magyari-Köpe B, Ozoliņš V, et al. Lattice instabilities in metallic elements [J]. Rev. Mod. Phys., 2012, 84: 945
33 Yan H L, Zhao Y, Liu H X, et al. Ab-initio revelation on the origins of Ti substitution for Ga, Mn and Ni on ferromagnetism, phase stability and elastic properties in Ni2MnGa [J]. J. Alloys Compd., 2020, 821: 153481
34 Bhattacharya K, Conti S, Zanzotto G, et al. Crystal symmetry and the reversibility of martensitic transformations [J]. Nature, 2004, 428: 55
35 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
36 Nguyen-Manh D, Pettifor D G. Electronic structure, phase stability and elastic moduli of AB transition metal aluminides [J]. Intermetallics, 1999, 7: 1095
37 Mizutani U. Hume-Rothery rules for structurally complex alloy phases [J]. MRS Bull., 2012, 37: 169
38 Massalski T B, Laughlin D E. The surprising role of magnetism on the phase stability of Fe (Ferro) [J]. Calphad, 2009, 33: 3
39 Körmann F, Hickel T, Neugebauer J. Influence of magnetic excitations on the phase stability of metals and steels [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 77
40 Yan H L, Sánchez-Valdés C F, Zhang Y D, et al. Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50.0Mn35.25In14.75 melt-spun ribbons [J]. J. Alloys Compd., 2018, 767: 544
41 Yan H L, Zhao Y, Liu H X, et al. Occupation preferences and impacts of interstitial H, C, N, and O on magnetism and phase stability of Ni2MnGa magnetic shape memory alloys by first-principles calculations [J]. J. Appl. Phys., 2022, 131: 205101
42 Naohara T, Inoue A, Minemura T, et al. Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys [J]. Metall. Mater. Trans., 1982, 13A: 337
43 Liu H X, Yan H L, Jia N, et al. Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys [J]. J. Mater. Sci. Technol., 2022, 131: 1
44 Massalski T B, Mizutani U. Electronic structure of Hume-Rothery phases [J]. Prog. Mater. Sci., 1978, 22: 151
[1] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[2] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[3] 赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[12] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[13] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[14] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[15] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.