|
|
基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度 |
黎康杰, 孙泽羽, 何蓓( ), 田象军 |
北京航空航天大学 大型金属构件增材制造国家工程实验室 北京 100191 |
|
Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool |
LI Kangjie, SUN Zeyu, HE Bei( ), TIAN Xiangjun |
National Engineering Laboratory of Additive Manufacturing for Large Metallic Structures, Beihang University, Beijing 100191, China |
引用本文:
黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
Kangjie LI,
Zeyu SUN,
Bei HE,
Xiangjun TIAN.
Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. Acta Metall Sin, 2024, 60(5): 661-669.
1 |
Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metall. Mater. Trans., 2012, 43A: 3325
|
2 |
Tian S, Bai X P, Chen F L, et al. Experimental research on deformation law of 2050 Al-Li alloy shot peen forming[J]. J. Netshape Form. Eng., 2022, 14(8): 67
|
2 |
田 硕, 白雪飘, 陈福龙 等. 2050铝锂合金喷丸成形变形规律试验研究[J]. 精密成形工程, 2022, 14(8): 67
|
3 |
Sun Z G, Guo X, Liu H B, et al. Development trend of advanced manufacturing technology for aluminum-lithium alloy[J]. Aeron. Manuf. Technol., 2012, (5): 60
|
3 |
孙中刚, 郭 旋, 刘红兵 等. 铝锂合金先进制造技术及其发展趋势[J]. 航空制造技术, 2012, (5): 60
|
4 |
Gupta R K, Nayan N, Nagasireesha G, et al. Development and characterization of Al-Li alloys[J]. Mater. Sci. Eng., 2006, A420: 228
|
5 |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
|
6 |
Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Mater. Sci. Eng., 1998, A257: 100
|
7 |
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeron. Manuf. Technol., 2018, 61(3): 74
|
7 |
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74
|
8 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
9 |
Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
9 |
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
10 |
Qi Z W, Qi B J, Cong B Q, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated[J]. J. Manuf. Process., 2019, 40: 27
doi: 10.1016/j.jmapro.2019.03.003
|
11 |
Jin P, Liu Y B, Li F X, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy[J]. Composites, 2021, 219B: 108921
|
12 |
Jin P, Liu Y B, Sun Q J. Evolution of crystallographic orientation, columnar to equiaxed transformation and mechanical properties realized by adding TiCps in wire and arc additive manufacturing 2219 aluminum alloy[J]. Addit. Manuf., 2021, 39: 101878
|
13 |
Wang L W, Suo Y C, Liang Z M, et al. Effect of titanium powder on microstructure and mechanical properties of wire + arc additively manufactured Al-Mg alloy[J]. Mater. Lett., 2019, 241: 231
doi: 10.1016/j.matlet.2019.01.117
|
14 |
Lin D C, Wang G X, Srivatsan T S. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090[J]. Mater. Sci. Eng., 2003, A351: 304
|
15 |
Mondol S, Kashyap S, Kumar S, et al. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route[J]. Mater. Sci. Eng., 2018, A732: 157
|
16 |
Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. J. Alloys Compd., 2015, 632: 505
doi: 10.1016/j.jallcom.2015.01.256
|
17 |
Liu S, Martínez E, LLorca J. Prediction of the Al-rich part of the Al-Cu phase diagram using cluster expansion and statistical mechanics[J]. Acta Mater., 2020, 195: 317
doi: 10.1016/j.actamat.2020.05.018
|
18 |
Bai J Y. Microstructure evolution of 2219-Al during GTA based additive manufacturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017
|
18 |
柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017
|
19 |
Jiao S K, Cheng X, Shen S X, et al. Microstructure evolution and mechanical behavior of Al-Li alloy fabricated by laser melting deposition technique[J]. J. Alloys Compd., 2020, 821: 153125
doi: 10.1016/j.jallcom.2019.153125
|
20 |
Rad M T, Beckermann C. A truncated-Scheil-type model for columnar solidification of binary alloys in the presence of melt convection[J]. Materialia, 2019, 7: 100364
doi: 10.1016/j.mtla.2019.100364
|
21 |
Chen F Y, Jie W Q. Study of microsegregation in Al-Cu-Zn ternary alloys by experiment and scheil model[J]. Acta Metall. Sin., 2004, 40: 664
|
21 |
陈福义, 介万奇. Al-Cu-Zn合金微观偏析的实验和Scheil模型研究[J]. 金属学报, 2004, 40: 664
|
22 |
Cui S, Zhang C S, Liu M F, et al. Precipitation behavior of an Al-Cu-Li-X alloy and competing relationships among precipitates at different aging temperatures[J]. Mater. Sci. Eng., 2021, A814: 141125
|
23 |
Zhou Y H, Lin X, Kang N, et al. Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy[J]. Mater. Charact., 2021, 171: 110735
doi: 10.1016/j.matchar.2020.110735
|
24 |
Zhou Y H, Lin X, Kang N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. J. Mater. Sci. Technol., 2020, 37: 143
doi: 10.1016/j.jmst.2019.06.016
|
25 |
Wu D J, Liu D H, Niu F Y, et al. Al-Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J]. Addit. Manuf., 2020, 32: 100954
|
26 |
Dorin T, Deschamps A, Geuser F D, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy[J]. Acta Mater., 2014, 75: 134
doi: 10.1016/j.actamat.2014.04.046
|
27 |
Sun Z Y, He B, Li K J, et al. Study on microstructure evolution and aging precipitation behavior of a novel Al-Li alloy fabricated by laser rapid melting[J]. J. Alloys Compd., 2022, 908: 164630
doi: 10.1016/j.jallcom.2022.164630
|
28 |
Sun Z Y, Tian X J, He B, et al. Microstructure evolution and microhardness of the novel Al-Cu-Li-xSc alloys fabricated by laser rapid melting[J]. Vacuum, 2021, 189: 110235
doi: 10.1016/j.vacuum.2021.110235
|
29 |
Sun Z Y, He B, Chen R, et al. Anomalous precipitation of Al3Sc dispersoids on deformation behavior of a novel Al-Cu-Li alloy fabricated by direct energy deposition[J]. Mater. Lett., 2022, 318: 132207
doi: 10.1016/j.matlet.2022.132207
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|