Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 661-669    DOI: 10.11900/0412.1961.2022.00559
  研究论文 本期目录 | 过刊浏览 |
基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度
黎康杰, 孙泽羽, 何蓓(), 田象军
北京航空航天大学 大型金属构件增材制造国家工程实验室 北京 100191
Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool
LI Kangjie, SUN Zeyu, HE Bei(), TIAN Xiangjun
National Engineering Laboratory of Additive Manufacturing for Large Metallic Structures, Beihang University, Beijing 100191, China
引用本文:

黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
Kangjie LI, Zeyu SUN, Bei HE, Xiangjun TIAN. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. Acta Metall Sin, 2024, 60(5): 661-669.

全文: PDF(3005 KB)   HTML
摘要: 

随着航空航天领域对大型轻量化构件的需求日益增加,研发新型Al-Li合金制备技术能够提升制造效率,减轻构件重量。本工作采用一种Al-Cu合金丝材与Al-Li二元合金粉末同步输送的电弧增材制造方法,成功制备了Al-Cu-Li合金试样。利用OM、SEM、XRD、TEM和Vickers硬度仪对试样的晶粒形貌、物相组成进行表征并测量硬度。结果表明,电弧增材制造Al-Cu-Li合金沉积态试样由10~20 μm的细小等轴晶组成,且晶界处存在半连续网状共晶θ (Al2Cu)相。增材制造热循环作用还会导致晶界附近析出TB (Al7Cu4Li)相与T1 (Al2CuLi)相。T1相主要分布于试样的中部及底部,且随着增材制造热循环次数的增加T1相含量呈上升趋势,试样底部的T1相含量最高。电弧增材制造Al-Cu-Li合金沉积态试样的最大硬度为126.7 HV0.1,略高于其他电弧增材制造2219 Al-Cu合金,这主要得益于细小的等轴晶组织以及热循环的作用下所产生的T1相。

关键词 Al-Li合金电弧增材制造显微组织硬度    
Abstract

Al-Li alloy has become an optional material for load-bearing components in aerospace because of its low density, high specific strength, and good fatigue performance. Currently, the widely used casting process to fabricate large Al-Li alloy structural parts has the issues of active and highly toxic Li elements, high equipment cost, long production cycle, limited forming size, and low material utilization. Wire and arc additive manufacturing technology uses an arc heat source to melt the raw materials, mostly prealloyed wires, and directly deposits the materials layer-by-layer by controlling the required components using a computer. It has the technical advantages of a short processing cycle, high material utilization, and a large frame formation, providing a new possibility for forming large Al-Li alloy components. Currently, the prealloyed welding wire is usually used as a raw material for arc additive manufacturing, but it is challenging to make high-performance Al-Li alloy wire and Li is strongly ablated under a high-temperature heat source. In situ metallurgy with an arc melt pool has prepared Al-Li alloys with good internal quality and superior performance potential while reducing manufacturing costs. Therefore, exploring the controllable addition of Li elements during the deposition process is necessary. Herein, the Al-Cu-Li alloy sample was successfully fabricated using a multimaterial arc melting deposition technology combining Al-Li alloy powder and 2219 Al-Cu alloy wire. The grain morphology, phase composition, and hardness of the as-built alloy sample were further analyzed. The as-built Al-Cu-Li alloy sample comprises fine equiaxed grains of 10-20 μm with semi-continuous reticular eutectic θ (Al2Cu) phases at the grain boundaries. TB (Al7Cu4Li) and T1 (Al2CuLi) phases can be observed near the grain boundaries under the influence of thermal cycling. T1 phases with significant strengthening effects can be observed in the middle and bottom of the sample. The number density of the T1 phase is higher in the bottom part compared to the middle, but the size of the T1 phase is relatively larger because the bottom of the sample near the substrate experienced more thermal cycling. The maximum hardness of the as-built Al-Li sample is 126.7 HV0.1, slightly higher than that of the other wire and arc additive manufactured using 2219 Al-Cu alloys, mainly owing to the fine equiaxed grains and the T1 phases formed via thermal cycling.

Key wordsAl-Li alloy    arc additive manufacturing    microstructure    hardness
收稿日期: 2022-11-01     
ZTFLH:  TG40  
基金资助:国家自然科学基金项目(52101033);国家自然科学基金项目(52090044)
通讯作者: 何蓓,hebei@buaa.edu.cn,主要从事金属增材制造的研究
Corresponding author: HE Bei, associate professor, Tel: (010)82339691, E-mail: hebei@buaa.edu.cn
作者简介: 黎康杰,男,1997年生,硕士
MaterialCuMgMnVTiZrZnFeSiAl
22195.8-6.80.2-0.40.2-0.40.05-0.150.1-0.20.10-0.25≤ 0.1≤ 0.3≤ 0.2Bal.
Substrate6.20.040.40.050.30.2≤ 0.10.30.2Bal.
表1  2219铝合金焊丝和沉积基材的化学成分 (mass fraction / %)
图1  电弧沉积Al-Cu-Li合金试样过程示意图及宏观照片
图2  沉积态Al-Cu-Li合金试样沿沉积方向顶部、中部及底部的组织形貌及晶粒异质形核示意图
图3  沉积态Al-Cu-Li合金试样沿沉积方向顶部、中部及底部的SEM像及EDS分析
图4  EDS点阵示意图和Scheil公式拟合结果
图5  沉积态Al-Cu-Li合金试样沿沉积方向的XRD谱
图6  沉积态Al-Cu-Li合金试样沿沉积方向顶部、中部及底部的TEM像与相应的SAED花样
图7  沉积态Al-Cu-Li试样中各部分T1相的HRTEM像与相应的快速Fourier变换(FFT)图
图8  沉积态Al-Cu-Li试样Vickers硬度分布
ProcessMaterialStateVickers hardness / HV0.1Ref.
MIG2219 + Al-Li powderAs-build126.7 ± 2.1This work
TIG2219 + TiCAs-build97.5 ± 2.5[11]
TIG2219As-build89 ± 4[24]
Laser + TIG2219As-build92.6 ± 3.7[25]
表2  各种工艺下合金试样的Vickers硬度[11,24,25]
1 Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metall. Mater. Trans., 2012, 43A: 3325
2 Tian S, Bai X P, Chen F L, et al. Experimental research on deformation law of 2050 Al-Li alloy shot peen forming[J]. J. Netshape Form. Eng., 2022, 14(8): 67
2 田 硕, 白雪飘, 陈福龙 等. 2050铝锂合金喷丸成形变形规律试验研究[J]. 精密成形工程, 2022, 14(8): 67
3 Sun Z G, Guo X, Liu H B, et al. Development trend of advanced manufacturing technology for aluminum-lithium alloy[J]. Aeron. Manuf. Technol., 2012, (5): 60
3 孙中刚, 郭 旋, 刘红兵 等. 铝锂合金先进制造技术及其发展趋势[J]. 航空制造技术, 2012, (5): 60
4 Gupta R K, Nayan N, Nagasireesha G, et al. Development and characterization of Al-Li alloys[J]. Mater. Sci. Eng., 2006, A420: 228
5 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
6 Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Mater. Sci. Eng., 1998, A257: 100
7 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeron. Manuf. Technol., 2018, 61(3): 74
7 李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74
8 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
9 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
9 孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
10 Qi Z W, Qi B J, Cong B Q, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated[J]. J. Manuf. Process., 2019, 40: 27
doi: 10.1016/j.jmapro.2019.03.003
11 Jin P, Liu Y B, Li F X, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy[J]. Composites, 2021, 219B: 108921
12 Jin P, Liu Y B, Sun Q J. Evolution of crystallographic orientation, columnar to equiaxed transformation and mechanical properties realized by adding TiCps in wire and arc additive manufacturing 2219 aluminum alloy[J]. Addit. Manuf., 2021, 39: 101878
13 Wang L W, Suo Y C, Liang Z M, et al. Effect of titanium powder on microstructure and mechanical properties of wire + arc additively manufactured Al-Mg alloy[J]. Mater. Lett., 2019, 241: 231
doi: 10.1016/j.matlet.2019.01.117
14 Lin D C, Wang G X, Srivatsan T S. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090[J]. Mater. Sci. Eng., 2003, A351: 304
15 Mondol S, Kashyap S, Kumar S, et al. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route[J]. Mater. Sci. Eng., 2018, A732: 157
16 Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. J. Alloys Compd., 2015, 632: 505
doi: 10.1016/j.jallcom.2015.01.256
17 Liu S, Martínez E, LLorca J. Prediction of the Al-rich part of the Al-Cu phase diagram using cluster expansion and statistical mechanics[J]. Acta Mater., 2020, 195: 317
doi: 10.1016/j.actamat.2020.05.018
18 Bai J Y. Microstructure evolution of 2219-Al during GTA based additive manufacturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017
18 柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017
19 Jiao S K, Cheng X, Shen S X, et al. Microstructure evolution and mechanical behavior of Al-Li alloy fabricated by laser melting deposition technique[J]. J. Alloys Compd., 2020, 821: 153125
doi: 10.1016/j.jallcom.2019.153125
20 Rad M T, Beckermann C. A truncated-Scheil-type model for columnar solidification of binary alloys in the presence of melt convection[J]. Materialia, 2019, 7: 100364
doi: 10.1016/j.mtla.2019.100364
21 Chen F Y, Jie W Q. Study of microsegregation in Al-Cu-Zn ternary alloys by experiment and scheil model[J]. Acta Metall. Sin., 2004, 40: 664
21 陈福义, 介万奇. Al-Cu-Zn合金微观偏析的实验和Scheil模型研究[J]. 金属学报, 2004, 40: 664
22 Cui S, Zhang C S, Liu M F, et al. Precipitation behavior of an Al-Cu-Li-X alloy and competing relationships among precipitates at different aging temperatures[J]. Mater. Sci. Eng., 2021, A814: 141125
23 Zhou Y H, Lin X, Kang N, et al. Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy[J]. Mater. Charact., 2021, 171: 110735
doi: 10.1016/j.matchar.2020.110735
24 Zhou Y H, Lin X, Kang N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. J. Mater. Sci. Technol., 2020, 37: 143
doi: 10.1016/j.jmst.2019.06.016
25 Wu D J, Liu D H, Niu F Y, et al. Al-Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J]. Addit. Manuf., 2020, 32: 100954
26 Dorin T, Deschamps A, Geuser F D, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy[J]. Acta Mater., 2014, 75: 134
doi: 10.1016/j.actamat.2014.04.046
27 Sun Z Y, He B, Li K J, et al. Study on microstructure evolution and aging precipitation behavior of a novel Al-Li alloy fabricated by laser rapid melting[J]. J. Alloys Compd., 2022, 908: 164630
doi: 10.1016/j.jallcom.2022.164630
28 Sun Z Y, Tian X J, He B, et al. Microstructure evolution and microhardness of the novel Al-Cu-Li-xSc alloys fabricated by laser rapid melting[J]. Vacuum, 2021, 189: 110235
doi: 10.1016/j.vacuum.2021.110235
29 Sun Z Y, He B, Chen R, et al. Anomalous precipitation of Al3Sc dispersoids on deformation behavior of a novel Al-Cu-Li alloy fabricated by direct energy deposition[J]. Mater. Lett., 2022, 318: 132207
doi: 10.1016/j.matlet.2022.132207
[1] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[2] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[3] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[4] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[5] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[6] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[12] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[13] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[14] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[15] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.