Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 650-660    DOI: 10.11900/0412.1961.2022.00557
  研究论文 本期目录 | 过刊浏览 |
VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响
李天瑞1, 许瑜倩1, 吴文平1, 甘文萱1, 杨永1(), 刘国怀2, 王昭东2
1 安徽工业大学 冶金工程学院 马鞍山 243000
2 东北大学 轧制技术与连轧自动化国家重点实验室 沈阳 110819
Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys
LI Tianrui1, XU Yuqian1, WU Wenping1, GAN Wenxuan1, YANG Yong1(), LIU Guohuai2, WANG Zhaodong2
1 College of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
Tianrui LI, Yuqian XU, Wenping WU, Wenxuan GAN, Yong YANG, Guohuai LIU, Zhaodong WANG. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. Acta Metall Sin, 2024, 60(5): 650-660.

全文: PDF(6121 KB)   HTML
摘要: 

为了探究V和B元素复合添加对βγ-TiAl合金的显微组织和变形机制产生的影响,本工作针对Ti-44Al-5Nb-1Mo合金和Ti-44Al-5Nb-1Mo-2V-0.2B合金,进行了不同温度和应变速率条件下的高温热压缩实验,利用SEM-BSE和TEM对组织进行表征,对比分析了其变形后的显微组织,研究了添加V和B对Ti-44Al-5Nb-1Mo合金的显微组织及热变形机制的影响。结果表明,2种TiAl合金的显微组织差异较大,添加V和B可以显著改变TiAl合金对热变形的敏感性。Ti-44Al-5Nb-1Mo-2V-0.2B合金高温变形能力明显优于Ti-44Al-5Nb-1Mo合金。Ti-44Al-5Nb-1Mo合金的高温热变形以难变形片层团的偏转、变形带的产生为主,温度为1250℃时,其变形组织表现出较高的温度和应变速率敏感性,极易形成尺寸不均匀的近片层组织;对于Ti-44Al-5Nb-1Mo-2V-0.2B合金而言,升高变形温度或降低应变速率,既可以促进片层团内部的变形诱导L(α/γ)→α + γ + β/B2和γα相变,又可以促进αβ/B2相的球化/动态再结晶,从而大幅提高该合金的组织均匀性。基于变形参数对组织的影响规律,确定了控制Ti-44Al-5Nb-1Mo和Ti-44Al-5Nb-1Mo-2V-0.2B合金中近全片层、近双态显微组织的方法。

关键词 TiAl合金(V, B)合金化热变形显微组织    
Abstract

TiAl alloys are considered potential structural materials because of their low density, good high-temperature strength, and creep resistance. However, their low-temperature brittleness and poor high-temperature workability lead to narrow processing windows, which hinder their industrial applications, low pressure turbine blades of high-performance engines and thermal protection system for hypersonic space vehicles, for instance. Extensive studies on alloying and hot mechanical processes have been conducted to control the microstructure and then enhance the inherent ductility of TiAl alloys. Alloying is considered as an effective method to stabilize softening phases or refine grains to optimize microstructural homogeneity and hot workability. Thus, β-solidifying γ-TiAl alloys represented by Ti-(40-45)Al-(2-8)Nb-(1-8)(Cr, Mn, V, Mo)-(0-0.5)(B, C) (atomic fraction, %) alloys were designed. Nb and Mo are added as β-phase stabilizers. Meanwhile, B, C, and Y serve as grain refiners, and they are added to increase the hot workability. However, multiple phases, precipitation, and corresponding phase transformations are introduced, leading to complex flow localization and deformation incompatibility. Therefore, considerable effort has been exerted on thermo-mechanical processing to improve the microstructural homogeneity of these alloys. The interaction among work hardening, recovery, recrystallization, and multiphase transformation under different deformation conditions easily aggravates flow localization and deformation incompatibility, which are inadequately studied. Therefore, a comprehensive understanding of the deformation behavior among multiphase β-solidifying γ-TiAl alloys is necessary. In this work, the uniaxial hot compressions of the β-solidifying γ-TiAl alloys with the nominal compositions of Ti-44Al-5Nb-1Mo and Ti-44Al-5Nb-1Mo-2V-0.2B were conducted. The microstructure of the alloys under different temperatures and strain rates was contrastively studied using SEM-BSE and TEM. The effects of V and B on the microstructural evolutions and deformation mechanisms were analyzed. The results indicated that the addition of V and B contributed considerable differences in microstructure and thermal mechanical sensibility. The Ti-44Al-5Nb-1Mo-2V-0.2B alloy showed high-temperature deformation ability. The deflection of residual lamellae and the formation of shear bands were the main deformation mechanisms, and a nearly lamellar microstructure with a nonuniform grain size was easily generated at 1250oC for the Ti-44Al-5Nb-1Mo alloy. On the contrary, for the Ti-44Al-5Nb-1Mo-2V-0.2B alloy, the deformation-induced lamellae decomposition of lamellar (α/γ) (L(α/γ) for short)→α + γ + β/B2 and γα and the spheroidization or dynamic recrystallization of α and B2 grains could be promoted with the increase of deformation temperatures and decrease of strain rates. Consequently, the microstructural homogeneity was greatly improved. Furthermore, specific deformation conditions of the microstructural control, including a nearly full lamellar and nearly duplex microstructure, were presented in this work.

Key wordsTiAl alloy    (V, B)-alloying    hot deformation    microstructure
收稿日期: 2022-11-01     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52301028);国家自然科学基金项目(52071065);中央高校基本科研业务费项目(N2007007);安徽省科技厅自然科学基金项目(2208085QE147);安徽省教育厅高校科研项目(2022AH050333);安徽工业大学青年基金项目(QZ202102)
通讯作者: 杨 永,yyang@ahut.edu.cn,主要从事Ti及TiAl合金的热变形行为研究
Corresponding author: YANG Yong, Tel: 18955536223, E-mail: yyang@ahut.edu.cn
作者简介: 李天瑞,女,1992年生,博士
图1  Ti-44Al-5Nb-1Mo和Ti-44Al-5Nb-1Mo-2V-0.2B合金均匀化后的SEM像
图2  均匀化处理后Ti-44Al-5Nb-1Mo-2V-0.2B合金的EPMA面扫描分析
图3  均匀化处理后Ti-44Al-5Nb-1Mo-2V-0.2B合金中硼化物的TEM像及SAED花样
图4  Ti-44Al-5Nb-1Mo合金在不同温度下、应变速率为1 s-1时变形后显微组织的SEM像
图5  Ti-44Al-5Nb-1Mo-2V-0.2B合金在不同温度下、应变速率为1 s-1时变形后显微组织的SEM像
图6  Ti-44Al-5Nb-1Mo合金在不同热变形工艺下进行高温热变形后显微组织的SEM像
图7  Ti-44Al-5Nb-1Mo-2V-0.2B合金在不同热变形工艺下进行高温热变形后显微组织的SEM像
图8  Ti-44Al-5Nb-1Mo合金中片层组织演化的TEM分析
图9  Ti-44Al-5Nb-1Mo-2V-0.2B合金显微组织的TEM分析
1 Chen Y Y, Ye Y, Sun J F. Present status for rolling TiAl alloy sheet[J]. Acta Metall. Sin., 2022, 58: 965
doi: 10.11900/0412.1961.2021.00438
1 陈玉勇, 叶 园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58: 965
doi: 10.11900/0412.1961.2021.00438
2 Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
2 杨 锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129
3 Huang X, Li Z X, Huang H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J]. Mater. China, 2011, 30(6): 21
3 黄 旭, 李臻熙, 黄 浩. 高推重比航空发动机用新型高温钛合金研究进展[J]. 中国材料进展, 2011, 30(6): 21
4 Zeng S W, Zhao A M, Luo L, et al. Development of β-solidifying γ-TiAl alloys sheet[J]. Mater. Lett., 2017, 198: 31
doi: 10.1016/j.matlet.2017.03.173
5 Xu M, Liu G H, Li T R, et al. Microstructure characteristics of Ti-43Al alloy during twin-roll strip casting and heat treatment[J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1017
doi: 10.1016/S1003-6326(19)65010-7
6 Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets[J]. Mater. Sci. Eng., 2019, A764: 138197
7 Guo J M, Liang J L, Li H, et al. Research progress on preparation technology of titanium aluminum alloy and its intermetallic compounds[J]. Multipurp. Util. Miner. Resour., 2022, (3): 1
7 郭佳明, 梁精龙, 李 慧 等. 钛铝合金及其金属间化合物制备工艺研究进展[J]. 矿产综合利用, 2022, (3): 1
8 Kim Y W. Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy[J]. Acta Metall. Mater., 1992, 40: 1121
doi: 10.1016/0956-7151(92)90411-7
9 Jiang H T, Zeng S W, Zhao A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Mater. Sci. Eng., 2016, A661: 160
10 Wang Q, Chen R R, Yang Y H, et al. Effects of lamellar spacing on microstructural stability and creep properties in β-solidifying γ-TiAl alloy by directional solidification[J]. Mater. Sci. Eng., 2018, A711: 508
11 Niu H Z, Gao T X, Sun Q Q, et al. Prior particle boundaries and microstructural homogenization of a β-solidifying γ-TiAl alloy fabricated from prealloyed powder[J]. Mater. Sci. Eng., 2018, A737: 151
12 Han J C, Dong J, Zhang S Z, et al. Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition[J]. Mater. Sci. Eng., 2018, A715: 41
13 Ye T, Song L, Liang Y F, et al. Precipitation behavior of ωo phase and texture evolution of a forged Ti-45Al-8.5Nb-(W, B, Y) alloy during creep[J]. Mater. Charact., 2018, 136: 41
doi: 10.1016/j.matchar.2017.12.007
14 Guo B Q, Aranas C, Foul A, et al. Effect of multipass deformation at elevated temperatures on the flow behavior and microstructural evolution in Ti-6Al-4V[J]. Mater. Sci. Eng., 2018, A729: 119
15 Schnabel J E, Bargmann S, Paul J D H, et al. Work hardening and recovery in fully lamellar TiAl: Relative activity of deformation systems[J]. Philos. Mag., 2019, 99: 148
doi: 10.1080/14786435.2018.1532121
16 Gu X, Jiang S D, Cao F Y, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates[J]. Scr. Mater., 2021, 192: 55
doi: 10.1016/j.scriptamat.2020.10.010
17 Niu H Z, Kong F T, Xiao S L, et al. Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy[J]. Intermetallics, 2012, 21: 97
doi: 10.1016/j.intermet.2011.10.003
18 Zhao E T, Niu H Z, Zhang S Z, et al. Microstructural control and mechanical properties of a β-solidified γ-TiAl alloy Ti-46Al-2Nb-1.5V-1Mo-Y[J]. Mater. Sci. Eng., 2017, A701: 1
19 Zhang J H, Huang B Y, Zhou K C, et al. Pack rolling of TiAl based alloy[J]. Chin. J. Nonferrous Met., 2001, 11: 1055
19 张俊红, 黄伯云, 周科朝 等. 包套轧制制备TiAl基合金板材[J]. 中国有色金属学报, 2001, 11: 1055
20 Ouadah O, Merad G, Abdelkader H S. Effect of co-alloying elements on the structural stability, elastic, ductility and thermodynamic properties of TiAl intermetallic compound[J]. Solid State Commun., 2021, 337: 114438
doi: 10.1016/j.ssc.2021.114438
21 Yang R, Rahman K M, Rakhymberdiyev A N, et al. Mechanical behaviour of Ti-Nb-Hf alloys[J]. Mater. Sci. Eng., 2019, A740-741: 398
22 Ding H S, Zhang H L, Wang Q, et al. Effect of Y2O3 particles on the fracture toughness of directionally solidified TiAl-based alloys[J]. Mater. Sci. Eng., 2017, A703: 108
23 Niu H Z, Tong R L, Chen X J, et al. Rapid decomposition of lamellar microstructure and enhanced hot workability of an as-cast triphase Ti-45Al-6Nb-1Mo alloy via one-step alpha-extrusion & annealing[J]. Mater. Sci. Eng., 2021, A801: 140438
24 Lapin J, Pelachová T, Bajana O. High temperature deformation behaviour and microstructure of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. J. Alloys Compd., 2019, 797: 754
doi: 10.1016/j.jallcom.2019.05.136
25 Jin Y G, Wang J N, Yang J, et al. Microstructure refinement of cast TiAl alloys by β solidification[J]. Scr. Mater., 2004, 51: 113
doi: 10.1016/j.scriptamat.2004.03.044
26 Lapin J, Štamborská M, Pelachová T, et al. Fracture behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. Mater. Sci. Eng., 2018, A721: 1
27 Jiang H T, Tian S W, Guo W Q, et al. Hot deformation behavior and deformation mechanism of two TiAl-Mo alloys during hot compression[J]. Mater. Sci. Eng., 2018, A719: 104
28 Song L, Wang L, Oehring M, et al. Evidence for deformation twinning of the D019-α2 phase in a high Nb containing TiAl alloy[J]. Intermetallics, 2019, 109: 91
doi: 10.1016/j.intermet.2019.03.014
[1] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[2] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[3] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[4] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[5] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[6] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[7] 侯志远, 刘威峰, 徐斌, 孙明月, 时婧, 任少飞. M50轴承钢热变形过程中孔洞形成及演化机制[J]. 金属学报, 2024, 60(1): 57-68.
[8] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[9] 陈玉勇, 时国浩, 杜之明, 张宇, 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 2024, 60(1): 1-15.
[10] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[12] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[13] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.