|
|
V和B元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响 |
李天瑞1, 许瑜倩1, 吴文平1, 甘文萱1, 杨永1( ), 刘国怀2, 王昭东2 |
1 安徽工业大学 冶金工程学院 马鞍山 243000 2 东北大学 轧制技术与连轧自动化国家重点实验室 沈阳 110819 |
|
Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys |
LI Tianrui1, XU Yuqian1, WU Wenping1, GAN Wenxuan1, YANG Yong1( ), LIU Guohuai2, WANG Zhaodong2 |
1 College of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. V和B元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
Tianrui LI,
Yuqian XU,
Wenping WU,
Wenxuan GAN,
Yong YANG,
Guohuai LIU,
Zhaodong WANG.
Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. Acta Metall Sin, 2024, 60(5): 650-660.
1 |
Chen Y Y, Ye Y, Sun J F. Present status for rolling TiAl alloy sheet[J]. Acta Metall. Sin., 2022, 58: 965
doi: 10.11900/0412.1961.2021.00438
|
1 |
陈玉勇, 叶 园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58: 965
doi: 10.11900/0412.1961.2021.00438
|
2 |
Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
2 |
杨 锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129
|
3 |
Huang X, Li Z X, Huang H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J]. Mater. China, 2011, 30(6): 21
|
3 |
黄 旭, 李臻熙, 黄 浩. 高推重比航空发动机用新型高温钛合金研究进展[J]. 中国材料进展, 2011, 30(6): 21
|
4 |
Zeng S W, Zhao A M, Luo L, et al. Development of β-solidifying γ-TiAl alloys sheet[J]. Mater. Lett., 2017, 198: 31
doi: 10.1016/j.matlet.2017.03.173
|
5 |
Xu M, Liu G H, Li T R, et al. Microstructure characteristics of Ti-43Al alloy during twin-roll strip casting and heat treatment[J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1017
doi: 10.1016/S1003-6326(19)65010-7
|
6 |
Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets[J]. Mater. Sci. Eng., 2019, A764: 138197
|
7 |
Guo J M, Liang J L, Li H, et al. Research progress on preparation technology of titanium aluminum alloy and its intermetallic compounds[J]. Multipurp. Util. Miner. Resour., 2022, (3): 1
|
7 |
郭佳明, 梁精龙, 李 慧 等. 钛铝合金及其金属间化合物制备工艺研究进展[J]. 矿产综合利用, 2022, (3): 1
|
8 |
Kim Y W. Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy[J]. Acta Metall. Mater., 1992, 40: 1121
doi: 10.1016/0956-7151(92)90411-7
|
9 |
Jiang H T, Zeng S W, Zhao A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Mater. Sci. Eng., 2016, A661: 160
|
10 |
Wang Q, Chen R R, Yang Y H, et al. Effects of lamellar spacing on microstructural stability and creep properties in β-solidifying γ-TiAl alloy by directional solidification[J]. Mater. Sci. Eng., 2018, A711: 508
|
11 |
Niu H Z, Gao T X, Sun Q Q, et al. Prior particle boundaries and microstructural homogenization of a β-solidifying γ-TiAl alloy fabricated from prealloyed powder[J]. Mater. Sci. Eng., 2018, A737: 151
|
12 |
Han J C, Dong J, Zhang S Z, et al. Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition[J]. Mater. Sci. Eng., 2018, A715: 41
|
13 |
Ye T, Song L, Liang Y F, et al. Precipitation behavior of ωo phase and texture evolution of a forged Ti-45Al-8.5Nb-(W, B, Y) alloy during creep[J]. Mater. Charact., 2018, 136: 41
doi: 10.1016/j.matchar.2017.12.007
|
14 |
Guo B Q, Aranas C, Foul A, et al. Effect of multipass deformation at elevated temperatures on the flow behavior and microstructural evolution in Ti-6Al-4V[J]. Mater. Sci. Eng., 2018, A729: 119
|
15 |
Schnabel J E, Bargmann S, Paul J D H, et al. Work hardening and recovery in fully lamellar TiAl: Relative activity of deformation systems[J]. Philos. Mag., 2019, 99: 148
doi: 10.1080/14786435.2018.1532121
|
16 |
Gu X, Jiang S D, Cao F Y, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates[J]. Scr. Mater., 2021, 192: 55
doi: 10.1016/j.scriptamat.2020.10.010
|
17 |
Niu H Z, Kong F T, Xiao S L, et al. Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy[J]. Intermetallics, 2012, 21: 97
doi: 10.1016/j.intermet.2011.10.003
|
18 |
Zhao E T, Niu H Z, Zhang S Z, et al. Microstructural control and mechanical properties of a β-solidified γ-TiAl alloy Ti-46Al-2Nb-1.5V-1Mo-Y[J]. Mater. Sci. Eng., 2017, A701: 1
|
19 |
Zhang J H, Huang B Y, Zhou K C, et al. Pack rolling of TiAl based alloy[J]. Chin. J. Nonferrous Met., 2001, 11: 1055
|
19 |
张俊红, 黄伯云, 周科朝 等. 包套轧制制备TiAl基合金板材[J]. 中国有色金属学报, 2001, 11: 1055
|
20 |
Ouadah O, Merad G, Abdelkader H S. Effect of co-alloying elements on the structural stability, elastic, ductility and thermodynamic properties of TiAl intermetallic compound[J]. Solid State Commun., 2021, 337: 114438
doi: 10.1016/j.ssc.2021.114438
|
21 |
Yang R, Rahman K M, Rakhymberdiyev A N, et al. Mechanical behaviour of Ti-Nb-Hf alloys[J]. Mater. Sci. Eng., 2019, A740-741: 398
|
22 |
Ding H S, Zhang H L, Wang Q, et al. Effect of Y2O3 particles on the fracture toughness of directionally solidified TiAl-based alloys[J]. Mater. Sci. Eng., 2017, A703: 108
|
23 |
Niu H Z, Tong R L, Chen X J, et al. Rapid decomposition of lamellar microstructure and enhanced hot workability of an as-cast triphase Ti-45Al-6Nb-1Mo alloy via one-step alpha-extrusion & annealing[J]. Mater. Sci. Eng., 2021, A801: 140438
|
24 |
Lapin J, Pelachová T, Bajana O. High temperature deformation behaviour and microstructure of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. J. Alloys Compd., 2019, 797: 754
doi: 10.1016/j.jallcom.2019.05.136
|
25 |
Jin Y G, Wang J N, Yang J, et al. Microstructure refinement of cast TiAl alloys by β solidification[J]. Scr. Mater., 2004, 51: 113
doi: 10.1016/j.scriptamat.2004.03.044
|
26 |
Lapin J, Štamborská M, Pelachová T, et al. Fracture behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. Mater. Sci. Eng., 2018, A721: 1
|
27 |
Jiang H T, Tian S W, Guo W Q, et al. Hot deformation behavior and deformation mechanism of two TiAl-Mo alloys during hot compression[J]. Mater. Sci. Eng., 2018, A719: 104
|
28 |
Song L, Wang L, Oehring M, et al. Evidence for deformation twinning of the D019-α2 phase in a high Nb containing TiAl alloy[J]. Intermetallics, 2019, 109: 91
doi: 10.1016/j.intermet.2019.03.014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|