Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 473-484    DOI: 10.11900/0412.1961.2022.00239
  研究论文 本期目录 | 过刊浏览 |
低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制
田滕1, 查敏1,2,3(), 殷皓亮1, 花珍铭1, 贾海龙1,3, 王慧远1,2,3()
1 吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130025
2 吉林大学 超硬材料国家重点实验室 长春 130012
3 吉林大学 未来科学国际合作联合实验室 长春 130012
Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling
TIAN Teng1, ZHA Min1,2,3(), YIN Haoliang1, HUA Zhenming1, JIA Hailong1,3, WANG Huiyuan1,2,3()
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
2 State Key Laboratory of Super Hard Materials, Jilin University, Changchun 130012, China
3 International Center of Future Science, Jilin University, Changchun 130012, China
引用本文:

田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
Teng TIAN, Min ZHA, Haoliang YIN, Zhenming HUA, Hailong JIA, Huiyuan WANG. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. Acta Metall Sin, 2024, 60(4): 473-484.

全文: PDF(6737 KB)   HTML
摘要: 

通过大变形技术制备的高强Al-Mg合金具有广阔应用前景,但其塑性低和高温稳定性差的缺点严重限制其进一步发展。本工作采用低温高应变量衬板控轧(cryogenic high-reduction hard-plate rolling,CHR-HPR)制备了兼具高强塑性(抗拉强度约597 MPa、延伸率约7.7%)和高热稳定性的高固溶Mg含量Al-9Mg合金。利用EBSD、TEM、硬度测量和拉伸实验等方法系统研究了Mg含量对CHR-HPR Al-Mg合金微观组织和力学性能的影响。结果表明:CHR-HPR Al-9Mg合金中高含量固溶Mg原子与低温变形促进合金中形成了高密度位错及小角晶界,显著提高合金的屈服强度;高含量固溶Mg原子与可动位错交互作用引起的动态应变时效导致合金加工硬化能力提高,进一步提高了合金的抗拉强度和塑性。此外,在再结晶退火过程中,高含量固溶Mg原子有效地抑制位错滑移、钉扎晶界,延缓回复与再结晶的发生。因此,CHR-HPR Al-Mg合金热稳定性随固溶Mg含量增加而显著提高,其中CHR-HPR Al-9Mg合金再结晶温度达到400℃。

关键词 Al-Mg合金低温衬板控轧加工硬化力学性能微观组织再结晶    
Abstract

Al-Mg series alloys are highly desirable for structural applications, owing to their high specific strength, good formability, and excellent corrosion resistance. However, high-strength Al-Mg alloys prepared via severe plastic deformation generally exhibit poor thermal stability, which is caused by the high-density grain boundaries (GBs). Achieving simultaneous high strength and thermal stability in binary Al-Mg alloys remains a challenge. In this study, Al-9Mg alloys with a combination of high strength (~597 MPa), decent elongation (~7.7%), and enhanced thermal stability were developed via cryogenic high-reduction hard-plate rolling (CHR-HPR). The effects of solute Mg content on the microstructure evolution and mechanical properties of CHR-HPR Al-Mg alloys were systematically investigated using EBSD, TEM, microhardness measurements, and tensile tests. The high yield strength is derived from high-density dislocations and low-angle GBs promoted via the high content of solute Mg atoms and low deformation temperature. In addition to the positive roles of Mg atoms and low deformation temperature on work-hardening ability, the simultaneous improvement in the ultimate tensile strength and ductility of CHR-HPR Al-Mg alloys with increasing solute Mg content is partially attributed to the enhanced work hardening induced via the dynamic strain aging. Furthermore, the recrystallization temperature of the CHR-HPR Al-Mg alloys gradually increased with increasing solute Mg content, and the recrystallization temperature of CHR-HPR Al-9Mg could reach 400oC. The enhanced thermal stability of CHR-HPR Al-9Mg alloy is due to the high content Mg solute atoms, which strongly retard recovery and recrystallization by dragging dislocations and pinning GBs.

Key wordsAl-Mg alloy    cryogenic hard-plate rolling    work hardening    mechanical property    microstructure    recrystallization
收稿日期: 2022-05-12     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51922048);国家自然科学基金项目(51625402);国家自然科学基金项目(51790483)
通讯作者: 查 敏,minzha@jlu.edu.cn,主要从事轻合金成分设计和强韧化等研究;
王慧远,wanghuiyuan@jlu.edu.cn,主要从事轻合金材料设计和制备等研究
Corresponding author: ZHA Min, professor, Tel:(0431)85094699, E-mail: minzha@jlu.edu.cn;
WANG Huiyuan, professor, Tel:(0431)85095415, E-mail: wanghuiyuan@jlu.edu.cn
作者简介: 田 滕,男,1996年生,博士生
AlloyMgFeMnSiAl
Al-1Mg1.050.050.0020.03Bal.
Al-5Mg5.180.050.0040.03Bal.
Al-9Mg9.090.050.0020.04Bal.
表1  Al-Mg合金化学成分 (mass fraction / %)
图1  挤压态和低温高应变量衬板控轧(CHR-HPR) Al-Mg合金的XRD谱
MaterialState

a

nm

Δa

nm

ΔMg

mass fraction / %

Pure Al[8]0.40413
Al-1MgAs-extruded0.40567 ± 0.000060.000250.48
CHR-HPR0.40542 ± 0.00001
Al-5MgAs-extruded0.40776 ± 0.000070.000350.68
CHR-HPR0.40741 ± 0.00001
Al-9MgAs-extruded0.40988 ± 0.000050.000200.38
CHR-HPR0.40968 ± 0.00001
表2  纯Al[8]、挤压态和CHR-HPR Al-Mg合金晶格参数和Mg减少量
图2  CHR-HPR Al-Mg合金微观组织的EBSD分析
图3  CHR-HPR Al-Mg合金微观组织的TEM像
图4  CHR-HPR Al-Mg合金室温拉伸性能
图5  CHR-HPR Al-Mg合金经不同温度退火30 min后的硬度变化曲线
图6  CHR-HPR Al-Mg合金经不同温度退火30 min后的室温拉伸性能
图7  CHR-HPR Al-Mg合金经275℃退火30 min后微观组织的EBSD分析
图8  CHR-HPR Al-Mg合金经300℃退火30 min后微观组织的EBSD分析
图9  CHR-HPR Al-Mg合金经350℃退火30 min后微观组织的EBSD分析
图10  CHR-HPR Al-Mg合金经400℃退火30 min后微观组织的EBSD分析
图11  CHR-HPR Al-Mg合金不同温度退火前后组织演变示意图
1 Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy[J]. Int. J. Plast., 2021, 146: 103108
doi: 10.1016/j.ijplas.2021.103108
2 Tang Y P, Goto W, Hirosawa S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition[J]. Acta Mater., 2017, 131: 57
doi: 10.1016/j.actamat.2017.04.002
3 Yuan T, Zhao X H, Jiang X Q, et al. Mechanism of grain refinement of pulse current assisted plasma arc welded Al-Mg alloy[J]. Acta Metall. Sin., 2024, 60: 323
doi: 10.11900/0412.1961.2022.00036
3 袁 涛, 赵晓虎, 蒋晓青 等. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60: 323
4 Zha M, Zhang H M, Meng X T, et al. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation[J]. J. Mater. Sci. Technol., 2021, 89: 141
doi: 10.1016/j.jmst.2021.01.086
5 Jang D H, Park Y B, Kim W J. Significant strengthening in superlight Al-Mg alloy with an exceptionally large amount of Mg (13 wt%) after cold rolling[J]. Mater. Sci. Eng., 2019, A744: 36
6 Morishige T, Hirata T, Uesugi T, et al. Effect of Mg content on the minimum grain size of Al-Mg alloys obtained by friction stir processing[J]. Scr. Mater., 2011, 64: 355
doi: 10.1016/j.scriptamat.2010.10.033
7 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
7 孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
8 Zha M, Li Y J, Mathiesen R H, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Mater., 2015, 84: 42
doi: 10.1016/j.actamat.2014.10.025
9 Liu Y, Liu M P, Chen X F, et al. Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion[J]. Scr. Mater., 2019, 159: 137
10 Ruppert M, Schunk C, Hausmann D, et al. Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding[J]. Acta Mater., 2016, 103: 643
doi: 10.1016/j.actamat.2015.11.009
11 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd[J]. Acta Mater., 2020, 183: 398
doi: 10.1016/j.actamat.2019.11.034
12 Konkova T, Mironov S, Korznikov A, et al. Microstructural response of pure copper to cryogenic rolling[J]. Acta Mater., 2010, 58: 5262
doi: 10.1016/j.actamat.2010.05.056
13 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
14 Zha M, Li Y J, Mathiesen R H, et al. High ductility bulk nanostructured Al-Mg binary alloy processed by equal channel angular pressing and inter-pass annealing[J]. Scr. Mater., 2015, 105: 22
doi: 10.1016/j.scriptamat.2015.04.018
15 Krymskiy S, Sitdikov O, Avtokratova E, et al. 2024 aluminum alloy ultrahigh-strength sheet due to two-level nanostructuring under cryorolling and heat treatment[J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 14
doi: 10.1016/S1003-6326(19)65176-9
16 Kumar V, Kumar D. Investigation of tensile behaviour of cryorolled and room temperature rolled 6082 Al alloy[J]. Mater. Sci. Eng., 2017, A691: 211
17 Zhang H M, Zha M, Jia H L, et al. Influences of the Al3Sc particle content on the evolution of bimodal grain structure and mechanical properties of Al-Mg-Sc alloys processed by hard-plate rolling[J]. Mater. Sci. Eng., 2021, A802: 140451
18 Zha M, Meng X T, Zhang H M, et al. High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route[J]. J. Alloys Compd., 2017, 728: 872
doi: 10.1016/j.jallcom.2017.09.017
19 Zha M, Liang J W, Xing H, et al. Spheroiding and refining of coarse CaMgSn phase in Mg-Al-Sn-Ca alloys for simultaneously improved strength and ductility via sub-rapid solidification and controlled rolling[J]. Mater. Sci. Eng., 2022, A834: 142598
20 Li Y K, Zha M, Jia H L, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles[J]. J. Magnes. Alloy., 2021, 9: 1556
doi: 10.1016/j.jma.2021.01.008
21 Li Y K, Zha M, Rong J, et al. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 88: 215
doi: 10.1016/j.jmst.2021.01.050
22 Jin Z Z, Zha M, Jia H L, et al. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 81: 219
doi: 10.1016/j.jmst.2020.11.069
23 Zhang H, Zha M, Tian T, et al. Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg-Al-Zn alloys processed by hard-plate rolling (HPR)[J]. Mater. Sci. Eng., 2021, A808: 140920
24 Zhou F, Liao X Z, Zhu Y T, et al. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling[J]. Acta Mater., 2003, 51: 2777
doi: 10.1016/S1359-6454(03)00083-1
25 Alyani A, Kazeminezhad M. Annealing behavior of aluminum after low-temperature severe plastic deformation[J]. Mater. Sci. Eng., 2021, A824: 141810
26 Dhal A, Panigrahi S K, Shunmugam M S. Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys[J]. J. Alloys Compd., 2017, 726: 1205
doi: 10.1016/j.jallcom.2017.08.062
27 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metall. Sin., 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
27 高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
28 Hasegawa H, Komura S, Utsunomiya A, et al. Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions[J]. Mater. Sci. Eng., 1999, A265: 188
29 Hayes J S, Keyte R, Prangnell P B. Effect of grain size on tensile behaviour of a submicron grained Al-3wt%-Mg alloy produced by severe deformation[J]. Mater. Sci. Technol., 2000, 16: 1259
doi: 10.1179/026708300101507479
30 Zha M, Meng X T, Yu Z Y, et al. Enhancing thermal stability of binary Al-Mg alloys by tailoring grain orientations using a high solute Mg content[J]. Metall. Mater. Trans., 2019, 50A: 5264
31 Jin S B, Tao N R, Marthinsen K, et al. Deformation of an Al-7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation[J]. Mater. Sci. Eng., 2015, A628: 160
32 Han B S, Wei L J, Xu Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment[J]. Acta Metall. Sin., 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
32 韩宝帅, 魏立军, 徐严谨 等. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
33 Kreyca J, Kozeschnik E. State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions[J]. Int. J. Plast., 2018, 103: 67
doi: 10.1016/j.ijplas.2018.01.001
34 Fu S H, Cheng T, Zhang Q C, et al. Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin-Le Chatelier effect[J]. Acta Mater., 2012, 60: 6650
doi: 10.1016/j.actamat.2012.08.035
35 Jobba M, Mishra R K, Niewczas M. Flow stress and work-hardening behaviour of Al-Mg binary alloys[J]. Int. J. Plast., 2015, 65: 43
doi: 10.1016/j.ijplas.2014.08.006
36 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
37 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy[J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
38 Hansen N. Hall-Petch relation and boundary strengthening[J]. Scr. Mater., 2004, 51: 801
doi: 10.1016/j.scriptamat.2004.06.002
39 Valiev R Z, Enikeev N A, Murashkin M Y, et al. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation[J]. Scr. Mater., 2010, 63: 949
doi: 10.1016/j.scriptamat.2010.07.014
40 Liu G, Zhang P, Yang C, et al. Aluminum alloys: Solute atom clusters and their strengthening[J]. Acta Metall. Sin., 2021, 57: 1484
doi: 10.11900/0412.1961.2021.00301
40 刘 刚, 张 鹏, 杨 冲 等. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57: 1484
41 Chen Y J, Roven H J, Gireesh S S, et al. Quantitative study of grain refinement in Al-Mg alloy processed by equal channel angular pressing at cryogenic temperature[J]. Mater. Lett., 2011, 65: 3472
doi: 10.1016/j.matlet.2011.07.067
[1] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[2] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[3] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[4] 袁涛, 赵晓虎, 蒋晓青, 任学磊, 李博阳. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60(3): 323-332.
[5] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[6] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[7] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[8] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[9] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[10] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[11] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[15] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.