The design and manufacture of heterostructured metallic materials for the balanced improvement of strength and ductility by interior microstructure construction have been the research frontiers and focus in mechanical engineering and materials science. Recently, the understanding of multiple hardening mechanisms in heterostructured metallic materials has progressively advanced. Although establishing quantitative relationships between hardening effects and microstructural parameters and further instructing the research and development of manufacturing for a superior combination between strength and ductility will be of significant value to the design theory, the manufacturing processes and property characterization of heterostructured metallic materials are crucial. In this article, the research progress on the theoretical foundations of designing microstructures and manufacturing processes for heterostructured metallic materials was reviewed. First, the heterostructured metallic materials from the perspective of their microstructural regulation method were categorized. Second, the theoretical foundations for the microstructural regulation of heterostructured materials were reviewed. Third, the manufacturing process for heterostructured materials was classified in terms of the up-bottom and bottom-up approaches as well as reviewed. Finally, the challenges and future development of the design and manufacture of heterostructured metallic materials were addressed.
Keywords:heterostructured metallic material;
strength and ductility;
back stress;
microstructural design;
manufacturing process
ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. Acta Metallurgica Sinica, 2022, 58(11): 1399-1415 DOI:10.11900/0412.1961.2022.00370
Fig.2
Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)[11,19,20,22,25-28,30]
Fig.3
Schematics of the calculation and mechanism of back stress
(a) calculation of back stress (σb) in unloading-reloading loop[33] (σu—unload yield stress, σr—reload yield stress)
(b) schematic of the mechanism of back stress and forward stress[35] (τa—an applied shear stress to pile up a dislocation against the boundary, n—the number of pile-up dislocations)
(c) components of back stress (HDI—heterodeformation-induced)
(d) back stress of gradient and homogeneous structures[33]
Fig.6
Effects of microstructure parameters on mechanical properties for nanotwinned metals
(a) effect of twin thickness on stress-strain curves[63] (nt—nanotwin, ufg—ultrafine grain, cg—coarse grain)
(b) effect of twin thickness (λ) or grain size (D) for nanocrystalline Cu on strain rate sensitivity index (m)[71]
(c) effect of stacking fault energy on stress-strain curves[72]
(d) effect of the angle between loading axis and twin boundary (θ) on the ratio of critical stress for dislocation emission and shear modulus[74] (σcr—critical stress, G—shear modulus)
增材制造(additive manufacturing,AM)技术被誉为有望产生“第三次工业革命”的代表性技术,是个性化制造模式发展的引领技术,其原理是利用计算机辅助设计逐点把材料累积形成面,逐面累积成为体,这一成形原理给材料设计从传统的纳/微观设计向宏观设计发展提供了新契机。增材制造因其独特的冷热循环效应,在微观尺度上易形成异构金属材料(图11c[108])。Lu等[124]和Yao等[125]利用该特性开发出多款低温高强韧性的增材制造多组元合金材料。通过调节增材制造工艺(如增材制造类型、扫描策略、激光功率等)、异种粉末类型和体积分数等参数可以在构件内形成多尺度晶粒或成分梯度结构。Tan等[108]利用直接能量沉积技术(direct energy deposition,DED)制造出具有可控体积分数和空间周期分布的异构金属材料。与大多数报道的线性格式多材料不同,这项工作利用DED空间设计和制造的独特灵活性,通过将2种类型钢(即高强的C300马氏体时效钢和高韧性的316L不锈钢)配置在一个部件空间,从而将2种材料的优点合并,有助于设计出强韧均衡的合金或部件。此外,利用DED技术或选区激光熔化技术制备出双层梯度组织材料已成为材料宏观尺度设计的重要方式,如双梯度SS316L/In718合金等[126],实现了强塑均衡材料的可控制造。
The attainment of both strength and toughness is a vital requirement for most structural materials; unfortunately these properties are generally mutually exclusive. Although the quest continues for stronger and harder materials, these have little to no use as bulk structural materials without appropriate fracture resistance. It is the lower-strength, and hence higher-toughness, materials that find use for most safety-critical applications where premature or, worse still, catastrophic fracture is unacceptable. For these reasons, the development of strong and tough (damage-tolerant) materials has traditionally been an exercise in compromise between hardness versus ductility. Drawing examples from metallic glasses, natural and biological materials, and structural and biomimetic ceramics, we examine some of the newer strategies in dealing with this conflict. Specifically, we focus on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture. We show how these new and natural materials can defeat the conflict of strength versus toughness and achieve unprecedented levels of damage tolerance within their respective material classes.
LiuX C, ZhangH W, LuK.
Strain-induced ultrahard and ultrastable nanolaminated structure in nickel
Heavy plastic deformation may refine grains of metals and make them very strong. But the strain-induced refinement saturates at large strains, forming three-dimensional ultrafine-grained (3D UFG) structures with random orientations. Further refinement of this microstructure is limited because of the enhanced mobility of grain boundaries. Very-high-rate shear deformation with high strain gradients was applied in the top surface layer of bulk nickel, where a 2D nanometer-scale laminated structure was induced. The strongly textured nanolaminated structure (average lamellar thickness of 20 nanometers) with low-angle boundaries among the lamellae is ultrahard and ultrastable: It exhibits a hardness of 6.4 gigapascal--which is higher than any reported hardness of the UFG nickel--and a coarsening temperature of 40 kelvin above that in UFG nickel.
FanG H, GengL, WuH, et al.
Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study
Methods used to strengthen metals generally also cause a pronounced decrease in electrical conductivity, so that a tradeoff must be made between conductivity and mechanical strength. We synthesized pure copper samples with a high density of nanoscale growth twins. They showed a tensile strength about 10 times higher than that of conventional coarse-grained copper, while retaining an electrical conductivity comparable to that of pure copper. The ultrahigh strength originates from the effective blockage of dislocation motion by numerous coherent twin boundaries that possess an extremely low electrical resistivity, which is not the case for other types of grain boundaries.
WeiY J, LiY Q, ZhuL C, et al.
Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins
The strength-ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength-ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems.
LiuX C, ZhangH W, LuK.
Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment
Conventional polycrystalline metals become stronger with decreasing grain size, yet softening starts to take over at the nanometer regime, giving rise to the strongest size at which the predominate strengthening mechanism switches to softening. We show that this critical size for the onset of softening can be tuned by tailoring grain size gradient, and raising in the gradient shifts the size toward the smaller value. The decrease in the strongest size is prompted by mitigation of grain boundary-mediated softening processes accompanying by enhanced intragranular plastic deformations. We found that the nanograins smaller than 6 nm, mainly involving intergranular sliding in homogeneous structures, reveal anomalous plastic deformation in gradient systems, which is mediated by partial dislocation nucleation, faulting and twinning activated in a gradient stress field. The results on extended dislocation slip and gradient plasticity, stemming from the structure heterogeneity, shed light on an emerging class of heterogeneous nanostructured materials of improved strength-ductility synergy.
MaX L, HuangC X, MoeringJ, et al.
Mechanical properties of copper/bronze laminates: Role of interfaces
The strength of polycrystalline materials increases with decreasing grain size. Below a critical size, smaller grains might lead to softening, as suggested by atomistic simulations. The strongest size should arise at a transition in deformation mechanism from lattice dislocation activities to grain boundary-related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced strain hardening and tensile ductility. The strongest twin thickness originates from a transition in the yielding mechanism from the slip transfer across twin boundaries to the activity of preexisting easy dislocation sources.
ShenY F, LuL, LuQ H, et al.
Tensile properties of copper with nano-scale twins
Twin-thickness-controlled plastic deformation mechanisms are well understood for submicron-sized twin-structural polycrystalline metals. However, for twin-structural nanocrystalline metals where both the grain size and twin thickness reach the nanometre scale, how these metals accommodate plastic deformation remains unclear. Here, we report an integrated grain size and twin thickness effect on the deformation mode of twin-structural nanocrystalline platinum. Above a ∼10 nm grain size, there is a critical value of twin thickness at which the full dislocation intersecting with the twin plane switches to a deformation mode that results in a partial dislocation parallel to the twin planes. This critical twin thickness value varies from ∼6 to 10 nm and is grain size-dependent. For grain sizes between ∼10 to 6 nm, only partial dislocation parallel to twin planes is observed. When the grain size falls below 6 nm, the plasticity switches to grain boundary-mediated plasticity, in contrast with previous studies, suggesting that the plasticity in twin-structural nanocrystalline metals is governed by partial dislocation activities.
ZhangY, TaoN R, LuK.
Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles
Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model
Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening
Evolution of microstructure, texture, and mechanical properties in a twin-roll cast AA6016 sheet after asymmetric rolling with various velocity ratios between top and bottom rolls
Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.
AmeyamaK, CazesF, CouqueH, et al.
Harmonic structure, a promising microstructure design
Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures
... [11,19,20,22,25~28,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... ,19,20,22,25~28,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... ,20,22,25~28,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... ,22,25~28,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... ,25~28,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... 另外,Li等[40]通过多组异质结构Cu的对比模拟发现,减小硬相尺寸和增大软相尺寸能够增加异质区应变梯度,开发出强韧性匹配更好的微观结构.Zhang等[38]通过考虑软硬相强度差主导的背应力强化机制,建立了描述双峰异构金属材料力学性能的晶体塑性本构模型,该模型不仅能够同时预测多种尺寸分布的双峰结构拉伸行为,还能定量地描述实验加卸载曲线求得的背应力演化,克服了未有效拟合实验背应力数据造成的背应力强化高估问题.并在此基础上对比了微观结构特征参量对力学行为的影响,结果表明,细化双峰结构中的硬相尺寸比调控软相尺寸能更有效地提升双峰结构的背应力强化效应,进一步提升材料的应变硬化能力(图4a和b[38]).微观结构特征参量对异构金属材料力学性能的影响<sup>[<xref ref-type="bibr" rid="R26">26</xref>,<xref ref-type="bibr" rid="R38">38</xref>,<xref ref-type="bibr" rid="R50">50</xref>]</sup>Effects of the microstructural parameters on the mechanical properties of heterogeneous structures
(a, b) effects of size of coarse and fine grains on the back stress hardening[38] ...
... (c) schematic of interface affected zone in the laminate structure[26] ...
... (d) effect of thickness of interface affected zone on the back stress[26] ...
... ~28,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... 喷丸(shot peening,SP)工艺是常见的传统机械表面处理技术之一,其工艺原理如图9a[84]所示.大量硬质弹丸在压缩空气的驱动下形成喷射流,反复地碰撞样品表面,导致材料表面发生严重塑性变形,表面晶粒持续的破碎与细化,从而制备出由表及里的梯度结构.喷丸工艺的主要优点是可以适应不同形状的样品,并且操作方便,成本相对低廉.但是,在长时间的处理过程中,弹丸的冲击能量较难精确控制,且存在表面粗糙度较差的问题[84,85],难以精准地调控材料表层的微观结构.表面强化工艺示意图以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R29">29</xref>,<xref ref-type="bibr" rid="R84">84</xref>,<xref ref-type="bibr" rid="R87">87</xref>,<xref ref-type="bibr" rid="R89">89</xref>,<xref ref-type="bibr" rid="R91">91</xref>]</sup>Schematics of the surface strengthening treatments and their main process parameters
... ,30]Schematic plot of yield strength and elongation of heterogeneous microstructure versus homogeneous microstructure (The sequence of various heterogeneous microstructure is arbitrary)<sup>[<xref ref-type="bibr" rid="R11">11</xref>,<xref ref-type="bibr" rid="R19">19</xref>,<xref ref-type="bibr" rid="R20">20</xref>,<xref ref-type="bibr" rid="R22">22</xref>,<xref ref-type="bibr" rid="R25">25</xref>-<xref ref-type="bibr" rid="R28">28</xref>,<xref ref-type="bibr" rid="R30">30</xref>]</sup>Fig.2<strong>2</strong> 异构金属材料设计理论基础
... 式中,σu和σr分别对应卸载与再加载时的屈服应力.实际上,基于此测得的背应力应由2个部分组成[34].一部分为加卸载过程中异质区非均匀变形导致的残余应力,即晶间背应力[34];此外,如图3b[35]所示,软硬区之间的非均匀变形在塑性变形过程中还会诱发巨大的应变梯度,将在异构界面处累积大量的几何必需位错,进而产生晶内背应力,即随动或背应力强化[34],在图中还包含了晶内背应力的反作用力——硬相中的前应力[35].因此,无论晶间背应力还是晶内背应力,物理起源都是由于材料非均匀微观结构的非均匀变形,例如取向错配、晶粒尺寸差异和夹杂等因素,如图3c所示.背应力计算方法与机理示意图<sup>[<xref ref-type="bibr" rid="R33">33</xref>,<xref ref-type="bibr" rid="R35">35</xref>]</sup>Schematics of the calculation and mechanism of back stress
(a) calculation of back stress (σb) in unloading-reloading loop[33] (σu—unload yield stress, σr—reload yield stress) ...
... (a) calculation of back stress (σb) in unloading-reloading loop[33] (σu—unload yield stress, σr—reload yield stress) ...
... (d) back stress of gradient and homogeneous structures[33] ...
... ,35]Schematics of the calculation and mechanism of back stress
(a) calculation of back stress (σb) in unloading-reloading loop[33] (σu—unload yield stress, σr—reload yield stress) ...
... (b) schematic of the mechanism of back stress and forward stress[35] (τa—an applied shear stress to pile up a dislocation against the boundary, n—the number of pile-up dislocations) ...
Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength
Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization
5
2019
... 另外,Li等[40]通过多组异质结构Cu的对比模拟发现,减小硬相尺寸和增大软相尺寸能够增加异质区应变梯度,开发出强韧性匹配更好的微观结构.Zhang等[38]通过考虑软硬相强度差主导的背应力强化机制,建立了描述双峰异构金属材料力学性能的晶体塑性本构模型,该模型不仅能够同时预测多种尺寸分布的双峰结构拉伸行为,还能定量地描述实验加卸载曲线求得的背应力演化,克服了未有效拟合实验背应力数据造成的背应力强化高估问题.并在此基础上对比了微观结构特征参量对力学行为的影响,结果表明,细化双峰结构中的硬相尺寸比调控软相尺寸能更有效地提升双峰结构的背应力强化效应,进一步提升材料的应变硬化能力(图4a和b[38]).微观结构特征参量对异构金属材料力学性能的影响<sup>[<xref ref-type="bibr" rid="R26">26</xref>,<xref ref-type="bibr" rid="R38">38</xref>,<xref ref-type="bibr" rid="R50">50</xref>]</sup>Effects of the microstructural parameters on the mechanical properties of heterogeneous structures
(a, b) effects of size of coarse and fine grains on the back stress hardening[38] ...
... (e) volume fraction of fine grains on the stress-strain curves[50] (CR—cold rolling, HS—heterogeneous structured, CG—coarse grain, YS—yield strength, UE—uniform elongation, UTS—ultimate tensile strength, EFT—elongation to fracture) ...
... (f) back stress[50] (σh—HDI stress, σeff—effective stress obtained from the loading-unloading-reloading test) ...
... [62]Effects of the distribution of coarse grains on the mechanical properties of heterogeneous structures<sup>[<xref ref-type="bibr" rid="R62">62</xref>]</sup>
(a-c) constructions of representative volume element (RVE) of harmonic (a), lamellar (b), and dispersed (c) structures ...
... [62]
(a-c) constructions of representative volume element (RVE) of harmonic (a), lamellar (b), and dispersed (c) structures ...
Revealing the maximum strength in nanotwinned copper
... ,74]Effects of microstructure parameters on mechanical properties for nanotwinned metals
(a) effect of twin thickness on stress-strain curves[63] (nt—nanotwin, ufg—ultrafine grain, cg—coarse grain) ...
... (d) effect of the angle between loading axis and twin boundary (θ) on the ratio of critical stress for dislocation emission and shear modulus[74] (σcr—critical stress, G—shear modulus) ...
Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model
... ,84,87,89,91]Schematics of the surface strengthening treatments and their main process parameters
(a) shot peening (SP)[84] ...
... (a) shot peening (SP)[84] ...
Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening
Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment
3
2004
... 喷丸(shot peening,SP)工艺是常见的传统机械表面处理技术之一,其工艺原理如图9a[84]所示.大量硬质弹丸在压缩空气的驱动下形成喷射流,反复地碰撞样品表面,导致材料表面发生严重塑性变形,表面晶粒持续的破碎与细化,从而制备出由表及里的梯度结构.喷丸工艺的主要优点是可以适应不同形状的样品,并且操作方便,成本相对低廉.但是,在长时间的处理过程中,弹丸的冲击能量较难精确控制,且存在表面粗糙度较差的问题[84,85],难以精准地调控材料表层的微观结构.表面强化工艺示意图以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R29">29</xref>,<xref ref-type="bibr" rid="R84">84</xref>,<xref ref-type="bibr" rid="R87">87</xref>,<xref ref-type="bibr" rid="R89">89</xref>,<xref ref-type="bibr" rid="R91">91</xref>]</sup>Schematics of the surface strengthening treatments and their main process parameters
Effect of surface nanocrystallization induced by fast multiple rotation rolling on mechanical properties of a low carbon steel
4
2012
... 喷丸(shot peening,SP)工艺是常见的传统机械表面处理技术之一,其工艺原理如图9a[84]所示.大量硬质弹丸在压缩空气的驱动下形成喷射流,反复地碰撞样品表面,导致材料表面发生严重塑性变形,表面晶粒持续的破碎与细化,从而制备出由表及里的梯度结构.喷丸工艺的主要优点是可以适应不同形状的样品,并且操作方便,成本相对低廉.但是,在长时间的处理过程中,弹丸的冲击能量较难精确控制,且存在表面粗糙度较差的问题[84,85],难以精准地调控材料表层的微观结构.表面强化工艺示意图以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R29">29</xref>,<xref ref-type="bibr" rid="R84">84</xref>,<xref ref-type="bibr" rid="R87">87</xref>,<xref ref-type="bibr" rid="R89">89</xref>,<xref ref-type="bibr" rid="R91">91</xref>]</sup>Schematics of the surface strengthening treatments and their main process parameters
(a) shot peening (SP)[84] ...
... (d) fast multiple rotation rolling (FMRR)[89] (P—pressure, ν— horizontal velocity, ω— rotational speed) ...
Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing
1
2008
... Wang等[90]研发的表面超声滚压处理(ultrasonic surface rolling process,USRP)技术将传统滚压技术与超声技术结合,沿工件表面法线方向对硬质合金工作头施加一定幅度的超声频机械振动,工作头将静压力和超声冲击振动传递到旋转的金属材料表面,使材料表面产生大幅度的塑性变形(图9e[91]).与此同时,在超声波冲击和静压力滚压联合作用下,保证了滚珠和变化曲面的连续接触,同时金属材料表面产生剧烈而均匀的塑性变形[92].此外,由于实现了工作滚珠与材料表面的近“无摩擦”冲击滚压效果,减少了对材料表面的划伤,获得了理想的表面质量.相较于SMGT工艺,USRP工艺提供了更多可供调控的工艺参数用于构筑理想微观结构,例如超声振动频率和振幅等.Cao等[93]选取振动频率为20 kHz且振动幅度为30 μm超声滚压工艺,在S45C钢上制备了极限尺寸为50 nm的梯度纳米层片结构并显著地改善了材料的表面完整性,表面硬度提升一倍,粗糙度降低一倍,极大提高了材料的抗疲劳性能.另外,超声表面滚压工艺对于复杂曲面零部件的加工具有独特的优势,Zhang等[94]设计了一种适用于复杂曲面,微观结构可调控的USRP系统,此系统可以沿着多曲度零件表面产生顺应性的变形,从而在加工过程中曲面受到稳定而均匀的静载荷加载并获得较高的表面质量和较理想的异构金属材料. ...
超声表面滚压处理对AZ31B镁合金组织和性能的影响
3
2022
... 喷丸(shot peening,SP)工艺是常见的传统机械表面处理技术之一,其工艺原理如图9a[84]所示.大量硬质弹丸在压缩空气的驱动下形成喷射流,反复地碰撞样品表面,导致材料表面发生严重塑性变形,表面晶粒持续的破碎与细化,从而制备出由表及里的梯度结构.喷丸工艺的主要优点是可以适应不同形状的样品,并且操作方便,成本相对低廉.但是,在长时间的处理过程中,弹丸的冲击能量较难精确控制,且存在表面粗糙度较差的问题[84,85],难以精准地调控材料表层的微观结构.表面强化工艺示意图以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R29">29</xref>,<xref ref-type="bibr" rid="R84">84</xref>,<xref ref-type="bibr" rid="R87">87</xref>,<xref ref-type="bibr" rid="R89">89</xref>,<xref ref-type="bibr" rid="R91">91</xref>]</sup>Schematics of the surface strengthening treatments and their main process parameters
(a) shot peening (SP)[84] ...
... (e) ultrasonic surface rolling process (USRP)[91] (ap—preset depth) ...
... Wang等[90]研发的表面超声滚压处理(ultrasonic surface rolling process,USRP)技术将传统滚压技术与超声技术结合,沿工件表面法线方向对硬质合金工作头施加一定幅度的超声频机械振动,工作头将静压力和超声冲击振动传递到旋转的金属材料表面,使材料表面产生大幅度的塑性变形(图9e[91]).与此同时,在超声波冲击和静压力滚压联合作用下,保证了滚珠和变化曲面的连续接触,同时金属材料表面产生剧烈而均匀的塑性变形[92].此外,由于实现了工作滚珠与材料表面的近“无摩擦”冲击滚压效果,减少了对材料表面的划伤,获得了理想的表面质量.相较于SMGT工艺,USRP工艺提供了更多可供调控的工艺参数用于构筑理想微观结构,例如超声振动频率和振幅等.Cao等[93]选取振动频率为20 kHz且振动幅度为30 μm超声滚压工艺,在S45C钢上制备了极限尺寸为50 nm的梯度纳米层片结构并显著地改善了材料的表面完整性,表面硬度提升一倍,粗糙度降低一倍,极大提高了材料的抗疲劳性能.另外,超声表面滚压工艺对于复杂曲面零部件的加工具有独特的优势,Zhang等[94]设计了一种适用于复杂曲面,微观结构可调控的USRP系统,此系统可以沿着多曲度零件表面产生顺应性的变形,从而在加工过程中曲面受到稳定而均匀的静载荷加载并获得较高的表面质量和较理想的异构金属材料. ...
超声表面滚压处理对AZ31B镁合金组织和性能的影响
3
2022
... 喷丸(shot peening,SP)工艺是常见的传统机械表面处理技术之一,其工艺原理如图9a[84]所示.大量硬质弹丸在压缩空气的驱动下形成喷射流,反复地碰撞样品表面,导致材料表面发生严重塑性变形,表面晶粒持续的破碎与细化,从而制备出由表及里的梯度结构.喷丸工艺的主要优点是可以适应不同形状的样品,并且操作方便,成本相对低廉.但是,在长时间的处理过程中,弹丸的冲击能量较难精确控制,且存在表面粗糙度较差的问题[84,85],难以精准地调控材料表层的微观结构.表面强化工艺示意图以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R29">29</xref>,<xref ref-type="bibr" rid="R84">84</xref>,<xref ref-type="bibr" rid="R87">87</xref>,<xref ref-type="bibr" rid="R89">89</xref>,<xref ref-type="bibr" rid="R91">91</xref>]</sup>Schematics of the surface strengthening treatments and their main process parameters
(a) shot peening (SP)[84] ...
... (e) ultrasonic surface rolling process (USRP)[91] (ap—preset depth) ...
... Wang等[90]研发的表面超声滚压处理(ultrasonic surface rolling process,USRP)技术将传统滚压技术与超声技术结合,沿工件表面法线方向对硬质合金工作头施加一定幅度的超声频机械振动,工作头将静压力和超声冲击振动传递到旋转的金属材料表面,使材料表面产生大幅度的塑性变形(图9e[91]).与此同时,在超声波冲击和静压力滚压联合作用下,保证了滚珠和变化曲面的连续接触,同时金属材料表面产生剧烈而均匀的塑性变形[92].此外,由于实现了工作滚珠与材料表面的近“无摩擦”冲击滚压效果,减少了对材料表面的划伤,获得了理想的表面质量.相较于SMGT工艺,USRP工艺提供了更多可供调控的工艺参数用于构筑理想微观结构,例如超声振动频率和振幅等.Cao等[93]选取振动频率为20 kHz且振动幅度为30 μm超声滚压工艺,在S45C钢上制备了极限尺寸为50 nm的梯度纳米层片结构并显著地改善了材料的表面完整性,表面硬度提升一倍,粗糙度降低一倍,极大提高了材料的抗疲劳性能.另外,超声表面滚压工艺对于复杂曲面零部件的加工具有独特的优势,Zhang等[94]设计了一种适用于复杂曲面,微观结构可调控的USRP系统,此系统可以沿着多曲度零件表面产生顺应性的变形,从而在加工过程中曲面受到稳定而均匀的静载荷加载并获得较高的表面质量和较理想的异构金属材料. ...
Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel
1
2019
... Wang等[90]研发的表面超声滚压处理(ultrasonic surface rolling process,USRP)技术将传统滚压技术与超声技术结合,沿工件表面法线方向对硬质合金工作头施加一定幅度的超声频机械振动,工作头将静压力和超声冲击振动传递到旋转的金属材料表面,使材料表面产生大幅度的塑性变形(图9e[91]).与此同时,在超声波冲击和静压力滚压联合作用下,保证了滚珠和变化曲面的连续接触,同时金属材料表面产生剧烈而均匀的塑性变形[92].此外,由于实现了工作滚珠与材料表面的近“无摩擦”冲击滚压效果,减少了对材料表面的划伤,获得了理想的表面质量.相较于SMGT工艺,USRP工艺提供了更多可供调控的工艺参数用于构筑理想微观结构,例如超声振动频率和振幅等.Cao等[93]选取振动频率为20 kHz且振动幅度为30 μm超声滚压工艺,在S45C钢上制备了极限尺寸为50 nm的梯度纳米层片结构并显著地改善了材料的表面完整性,表面硬度提升一倍,粗糙度降低一倍,极大提高了材料的抗疲劳性能.另外,超声表面滚压工艺对于复杂曲面零部件的加工具有独特的优势,Zhang等[94]设计了一种适用于复杂曲面,微观结构可调控的USRP系统,此系统可以沿着多曲度零件表面产生顺应性的变形,从而在加工过程中曲面受到稳定而均匀的静载荷加载并获得较高的表面质量和较理想的异构金属材料. ...
Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification
1
2010
... Wang等[90]研发的表面超声滚压处理(ultrasonic surface rolling process,USRP)技术将传统滚压技术与超声技术结合,沿工件表面法线方向对硬质合金工作头施加一定幅度的超声频机械振动,工作头将静压力和超声冲击振动传递到旋转的金属材料表面,使材料表面产生大幅度的塑性变形(图9e[91]).与此同时,在超声波冲击和静压力滚压联合作用下,保证了滚珠和变化曲面的连续接触,同时金属材料表面产生剧烈而均匀的塑性变形[92].此外,由于实现了工作滚珠与材料表面的近“无摩擦”冲击滚压效果,减少了对材料表面的划伤,获得了理想的表面质量.相较于SMGT工艺,USRP工艺提供了更多可供调控的工艺参数用于构筑理想微观结构,例如超声振动频率和振幅等.Cao等[93]选取振动频率为20 kHz且振动幅度为30 μm超声滚压工艺,在S45C钢上制备了极限尺寸为50 nm的梯度纳米层片结构并显著地改善了材料的表面完整性,表面硬度提升一倍,粗糙度降低一倍,极大提高了材料的抗疲劳性能.另外,超声表面滚压工艺对于复杂曲面零部件的加工具有独特的优势,Zhang等[94]设计了一种适用于复杂曲面,微观结构可调控的USRP系统,此系统可以沿着多曲度零件表面产生顺应性的变形,从而在加工过程中曲面受到稳定而均匀的静载荷加载并获得较高的表面质量和较理想的异构金属材料. ...
Active and passive compliant force control of ultrasonic surface rolling process on a curved surface
1
2022
... Wang等[90]研发的表面超声滚压处理(ultrasonic surface rolling process,USRP)技术将传统滚压技术与超声技术结合,沿工件表面法线方向对硬质合金工作头施加一定幅度的超声频机械振动,工作头将静压力和超声冲击振动传递到旋转的金属材料表面,使材料表面产生大幅度的塑性变形(图9e[91]).与此同时,在超声波冲击和静压力滚压联合作用下,保证了滚珠和变化曲面的连续接触,同时金属材料表面产生剧烈而均匀的塑性变形[92].此外,由于实现了工作滚珠与材料表面的近“无摩擦”冲击滚压效果,减少了对材料表面的划伤,获得了理想的表面质量.相较于SMGT工艺,USRP工艺提供了更多可供调控的工艺参数用于构筑理想微观结构,例如超声振动频率和振幅等.Cao等[93]选取振动频率为20 kHz且振动幅度为30 μm超声滚压工艺,在S45C钢上制备了极限尺寸为50 nm的梯度纳米层片结构并显著地改善了材料的表面完整性,表面硬度提升一倍,粗糙度降低一倍,极大提高了材料的抗疲劳性能.另外,超声表面滚压工艺对于复杂曲面零部件的加工具有独特的优势,Zhang等[94]设计了一种适用于复杂曲面,微观结构可调控的USRP系统,此系统可以沿着多曲度零件表面产生顺应性的变形,从而在加工过程中曲面受到稳定而均匀的静载荷加载并获得较高的表面质量和较理想的异构金属材料. ...
Enhanced load transfer and ductility in Al-9Ce alloy through heterogeneous lamellar microstructure design by cold rolling and annealing
Evolution of microstructure, texture, and mechanical properties in a twin-roll cast AA6016 sheet after asymmetric rolling with various velocity ratios between top and bottom rolls
4
2020
... 冷轧(cold rolling,CR)工艺结合不同热处理条件对于大规模制备高强韧性的材料具有良好的适用性以及经济性[95].如图10a[96]所示,轧制时2个旋转轧辊的转速相同,通过冷轧量和轧制次数的增加实现塑性变形量的不断累积.Sabooni等[97]通过冷轧和退火工艺在AISI 304L不锈钢中制备出双峰结构,有效地改善了材料的力学性能.块体剧烈塑性变形工艺以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R96">96</xref>,<xref ref-type="bibr" rid="R99">99</xref>,<xref ref-type="bibr" rid="R100">100</xref>,<xref ref-type="bibr" rid="R103">103</xref>]</sup>Schematics of severe deformed treatments for bulk and their main process parameters
(a) cold rolling (CR)[96] (ν, ν— rotation velocities of top and bottom roller, respectively) ...
Tailoring the microstructure of a Cu-0.7Cr-0.07Zr alloy submitted to ECAP at cryogenic temperature for improved thermal stability
3
2022
... 冷轧(cold rolling,CR)工艺结合不同热处理条件对于大规模制备高强韧性的材料具有良好的适用性以及经济性[95].如图10a[96]所示,轧制时2个旋转轧辊的转速相同,通过冷轧量和轧制次数的增加实现塑性变形量的不断累积.Sabooni等[97]通过冷轧和退火工艺在AISI 304L不锈钢中制备出双峰结构,有效地改善了材料的力学性能.块体剧烈塑性变形工艺以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R96">96</xref>,<xref ref-type="bibr" rid="R99">99</xref>,<xref ref-type="bibr" rid="R100">100</xref>,<xref ref-type="bibr" rid="R103">103</xref>]</sup>Schematics of severe deformed treatments for bulk and their main process parameters
(a) cold rolling (CR)[96] (ν, ν— rotation velocities of top and bottom roller, respectively) ...
... 累积叠轧(accumulative roll bonding,ARB)工艺的原理[102]是将两块形状、尺寸相同的薄板材料叠合在一起,在一定温度下进行轧制,使其轧合成一个整体;然后,将轧制成整体的板料从中截断,再经叠合、轧制等重复操作,实现塑性变形的累积.由于ARB工艺中涉及到多道工序,因此在制备过程中大量工艺参数,例如薄板的高径比,叠轧载荷以及叠轧扭转速率等,皆可用于提高异质结构制备的调控精准性.Ma等[103]将工业铜和青铜圆盘表面进行了机械抛光和超声波清洗,随后将两层或多层材料牢固结合,堆积起来并结合高压扭转(high pressure torsion,HPT)工艺,获得沿半径方向更均匀的变形,预热处理后立即用2个旋转的轧辊对板材进行研磨和压缩,这便是一个ARB循环, 如图10d[103]所示.多次循环后试样厚度减小,晶粒得到细化,梯度层变厚,随后在240℃下退火2 h,使部分晶粒再结晶,最终在界面附近形成异质纳米层片结构. ...
累积叠轧技术研究进展
1
2021
... 累积叠轧(accumulative roll bonding,ARB)工艺的原理[102]是将两块形状、尺寸相同的薄板材料叠合在一起,在一定温度下进行轧制,使其轧合成一个整体;然后,将轧制成整体的板料从中截断,再经叠合、轧制等重复操作,实现塑性变形的累积.由于ARB工艺中涉及到多道工序,因此在制备过程中大量工艺参数,例如薄板的高径比,叠轧载荷以及叠轧扭转速率等,皆可用于提高异质结构制备的调控精准性.Ma等[103]将工业铜和青铜圆盘表面进行了机械抛光和超声波清洗,随后将两层或多层材料牢固结合,堆积起来并结合高压扭转(high pressure torsion,HPT)工艺,获得沿半径方向更均匀的变形,预热处理后立即用2个旋转的轧辊对板材进行研磨和压缩,这便是一个ARB循环, 如图10d[103]所示.多次循环后试样厚度减小,晶粒得到细化,梯度层变厚,随后在240℃下退火2 h,使部分晶粒再结晶,最终在界面附近形成异质纳米层片结构. ...
Strain hardening and ductility in a coarse-grain/nanostructure laminate material
4
2015
... 冷轧(cold rolling,CR)工艺结合不同热处理条件对于大规模制备高强韧性的材料具有良好的适用性以及经济性[95].如图10a[96]所示,轧制时2个旋转轧辊的转速相同,通过冷轧量和轧制次数的增加实现塑性变形量的不断累积.Sabooni等[97]通过冷轧和退火工艺在AISI 304L不锈钢中制备出双峰结构,有效地改善了材料的力学性能.块体剧烈塑性变形工艺以及其主要的工艺参数<sup>[<xref ref-type="bibr" rid="R96">96</xref>,<xref ref-type="bibr" rid="R99">99</xref>,<xref ref-type="bibr" rid="R100">100</xref>,<xref ref-type="bibr" rid="R103">103</xref>]</sup>Schematics of severe deformed treatments for bulk and their main process parameters
(a) cold rolling (CR)[96] (ν, ν— rotation velocities of top and bottom roller, respectively) ...
... (d) accumulative roll bonding (ARB)[103] (HPT—high pressure torsion) ...
... 累积叠轧(accumulative roll bonding,ARB)工艺的原理[102]是将两块形状、尺寸相同的薄板材料叠合在一起,在一定温度下进行轧制,使其轧合成一个整体;然后,将轧制成整体的板料从中截断,再经叠合、轧制等重复操作,实现塑性变形的累积.由于ARB工艺中涉及到多道工序,因此在制备过程中大量工艺参数,例如薄板的高径比,叠轧载荷以及叠轧扭转速率等,皆可用于提高异质结构制备的调控精准性.Ma等[103]将工业铜和青铜圆盘表面进行了机械抛光和超声波清洗,随后将两层或多层材料牢固结合,堆积起来并结合高压扭转(high pressure torsion,HPT)工艺,获得沿半径方向更均匀的变形,预热处理后立即用2个旋转的轧辊对板材进行研磨和压缩,这便是一个ARB循环, 如图10d[103]所示.多次循环后试样厚度减小,晶粒得到细化,梯度层变厚,随后在240℃下退火2 h,使部分晶粒再结晶,最终在界面附近形成异质纳米层片结构. ...
... 电沉积(electrodeposition,ED)工艺通过两电极之间的电流,将电解液中的离子还原沉积到电极上,形成所需沉积物.由于电沉积工艺的高度均匀与可控性,被广泛应用于异构金属材料的制备[109~112].在直流电沉积过程中,可以通过调控电解液温度、浓度、沉积时间等来调控沉积物的形态、成分、织构等微观参量[105].Cheng等[104]通过沉积纯Cu制备高度可调的梯度纳米孪晶结构(图11a[104]),由于晶界附近超高密度的几何必需位错,梯度纳米孪晶结构的整体强度甚至超过了结构中的最强组分,大幅度地改善了结构强韧性匹配.Zhang等[113]通过调节电流密度和添加剂成功调控出双峰Ni,其内部核壳组织和大量共格孪晶大幅提升了材料的应变硬化,扩展了均匀材料的强韧性极限.脉冲电流的引入则提供了更多可调参数,例如超高的电流密度、沉积速率等,可以有效地调控晶粒度和微观形貌[105].Daryadel等[106]通过脉冲电沉积技术直接打印三维纳米孪晶Cu,沉积物完全致密且无杂质与微观缺陷,显示出超高的强度.Cui等[114]通过超声沉积技术发现多层沉积Cu能进一步降低单层沉积Cu的晶粒尺寸.自下而上设计法及其主要工艺参数<sup>[<xref ref-type="bibr" rid="R104">104</xref>,<xref ref-type="bibr" rid="R107">107</xref>,<xref ref-type="bibr" rid="R108">108</xref>,<xref ref-type="bibr" rid="R119">119</xref>]</sup>Schematics of the bottom-up design method and their main process parameters
... 电沉积(electrodeposition,ED)工艺通过两电极之间的电流,将电解液中的离子还原沉积到电极上,形成所需沉积物.由于电沉积工艺的高度均匀与可控性,被广泛应用于异构金属材料的制备[109~112].在直流电沉积过程中,可以通过调控电解液温度、浓度、沉积时间等来调控沉积物的形态、成分、织构等微观参量[105].Cheng等[104]通过沉积纯Cu制备高度可调的梯度纳米孪晶结构(图11a[104]),由于晶界附近超高密度的几何必需位错,梯度纳米孪晶结构的整体强度甚至超过了结构中的最强组分,大幅度地改善了结构强韧性匹配.Zhang等[113]通过调节电流密度和添加剂成功调控出双峰Ni,其内部核壳组织和大量共格孪晶大幅提升了材料的应变硬化,扩展了均匀材料的强韧性极限.脉冲电流的引入则提供了更多可调参数,例如超高的电流密度、沉积速率等,可以有效地调控晶粒度和微观形貌[105].Daryadel等[106]通过脉冲电沉积技术直接打印三维纳米孪晶Cu,沉积物完全致密且无杂质与微观缺陷,显示出超高的强度.Cui等[114]通过超声沉积技术发现多层沉积Cu能进一步降低单层沉积Cu的晶粒尺寸.自下而上设计法及其主要工艺参数<sup>[<xref ref-type="bibr" rid="R104">104</xref>,<xref ref-type="bibr" rid="R107">107</xref>,<xref ref-type="bibr" rid="R108">108</xref>,<xref ref-type="bibr" rid="R119">119</xref>]</sup>Schematics of the bottom-up design method and their main process parameters
... 增材制造(additive manufacturing,AM)技术被誉为有望产生“第三次工业革命”的代表性技术,是个性化制造模式发展的引领技术,其原理是利用计算机辅助设计逐点把材料累积形成面,逐面累积成为体,这一成形原理给材料设计从传统的纳/微观设计向宏观设计发展提供了新契机.增材制造因其独特的冷热循环效应,在微观尺度上易形成异构金属材料(图11c[108]).Lu等[124]和Yao等[125]利用该特性开发出多款低温高强韧性的增材制造多组元合金材料.通过调节增材制造工艺(如增材制造类型、扫描策略、激光功率等)、异种粉末类型和体积分数等参数可以在构件内形成多尺度晶粒或成分梯度结构.Tan等[108]利用直接能量沉积技术(direct energy deposition,DED)制造出具有可控体积分数和空间周期分布的异构金属材料.与大多数报道的线性格式多材料不同,这项工作利用DED空间设计和制造的独特灵活性,通过将2种类型钢(即高强的C300马氏体时效钢和高韧性的316L不锈钢)配置在一个部件空间,从而将2种材料的优点合并,有助于设计出强韧均衡的合金或部件.此外,利用DED技术或选区激光熔化技术制备出双层梯度组织材料已成为材料宏观尺度设计的重要方式,如双梯度SS316L/In718合金等[126],实现了强塑均衡材料的可控制造. ...
... [108]利用直接能量沉积技术(direct energy deposition,DED)制造出具有可控体积分数和空间周期分布的异构金属材料.与大多数报道的线性格式多材料不同,这项工作利用DED空间设计和制造的独特灵活性,通过将2种类型钢(即高强的C300马氏体时效钢和高韧性的316L不锈钢)配置在一个部件空间,从而将2种材料的优点合并,有助于设计出强韧均衡的合金或部件.此外,利用DED技术或选区激光熔化技术制备出双层梯度组织材料已成为材料宏观尺度设计的重要方式,如双梯度SS316L/In718合金等[126],实现了强塑均衡材料的可控制造. ...
High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution
Harmonic structure design: A strategy for outstanding mechanical properties in structural materials
3
2020
... 电沉积(electrodeposition,ED)工艺通过两电极之间的电流,将电解液中的离子还原沉积到电极上,形成所需沉积物.由于电沉积工艺的高度均匀与可控性,被广泛应用于异构金属材料的制备[109~112].在直流电沉积过程中,可以通过调控电解液温度、浓度、沉积时间等来调控沉积物的形态、成分、织构等微观参量[105].Cheng等[104]通过沉积纯Cu制备高度可调的梯度纳米孪晶结构(图11a[104]),由于晶界附近超高密度的几何必需位错,梯度纳米孪晶结构的整体强度甚至超过了结构中的最强组分,大幅度地改善了结构强韧性匹配.Zhang等[113]通过调节电流密度和添加剂成功调控出双峰Ni,其内部核壳组织和大量共格孪晶大幅提升了材料的应变硬化,扩展了均匀材料的强韧性极限.脉冲电流的引入则提供了更多可调参数,例如超高的电流密度、沉积速率等,可以有效地调控晶粒度和微观形貌[105].Daryadel等[106]通过脉冲电沉积技术直接打印三维纳米孪晶Cu,沉积物完全致密且无杂质与微观缺陷,显示出超高的强度.Cui等[114]通过超声沉积技术发现多层沉积Cu能进一步降低单层沉积Cu的晶粒尺寸.自下而上设计法及其主要工艺参数<sup>[<xref ref-type="bibr" rid="R104">104</xref>,<xref ref-type="bibr" rid="R107">107</xref>,<xref ref-type="bibr" rid="R108">108</xref>,<xref ref-type="bibr" rid="R119">119</xref>]</sup>Schematics of the bottom-up design method and their main process parameters
Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures
1
2022
... 增材制造(additive manufacturing,AM)技术被誉为有望产生“第三次工业革命”的代表性技术,是个性化制造模式发展的引领技术,其原理是利用计算机辅助设计逐点把材料累积形成面,逐面累积成为体,这一成形原理给材料设计从传统的纳/微观设计向宏观设计发展提供了新契机.增材制造因其独特的冷热循环效应,在微观尺度上易形成异构金属材料(图11c[108]).Lu等[124]和Yao等[125]利用该特性开发出多款低温高强韧性的增材制造多组元合金材料.通过调节增材制造工艺(如增材制造类型、扫描策略、激光功率等)、异种粉末类型和体积分数等参数可以在构件内形成多尺度晶粒或成分梯度结构.Tan等[108]利用直接能量沉积技术(direct energy deposition,DED)制造出具有可控体积分数和空间周期分布的异构金属材料.与大多数报道的线性格式多材料不同,这项工作利用DED空间设计和制造的独特灵活性,通过将2种类型钢(即高强的C300马氏体时效钢和高韧性的316L不锈钢)配置在一个部件空间,从而将2种材料的优点合并,有助于设计出强韧均衡的合金或部件.此外,利用DED技术或选区激光熔化技术制备出双层梯度组织材料已成为材料宏观尺度设计的重要方式,如双梯度SS316L/In718合金等[126],实现了强塑均衡材料的可控制造. ...
Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures
1
2022
... 增材制造(additive manufacturing,AM)技术被誉为有望产生“第三次工业革命”的代表性技术,是个性化制造模式发展的引领技术,其原理是利用计算机辅助设计逐点把材料累积形成面,逐面累积成为体,这一成形原理给材料设计从传统的纳/微观设计向宏观设计发展提供了新契机.增材制造因其独特的冷热循环效应,在微观尺度上易形成异构金属材料(图11c[108]).Lu等[124]和Yao等[125]利用该特性开发出多款低温高强韧性的增材制造多组元合金材料.通过调节增材制造工艺(如增材制造类型、扫描策略、激光功率等)、异种粉末类型和体积分数等参数可以在构件内形成多尺度晶粒或成分梯度结构.Tan等[108]利用直接能量沉积技术(direct energy deposition,DED)制造出具有可控体积分数和空间周期分布的异构金属材料.与大多数报道的线性格式多材料不同,这项工作利用DED空间设计和制造的独特灵活性,通过将2种类型钢(即高强的C300马氏体时效钢和高韧性的316L不锈钢)配置在一个部件空间,从而将2种材料的优点合并,有助于设计出强韧均衡的合金或部件.此外,利用DED技术或选区激光熔化技术制备出双层梯度组织材料已成为材料宏观尺度设计的重要方式,如双梯度SS316L/In718合金等[126],实现了强塑均衡材料的可控制造. ...
Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel
1
2022
... 增材制造(additive manufacturing,AM)技术被誉为有望产生“第三次工业革命”的代表性技术,是个性化制造模式发展的引领技术,其原理是利用计算机辅助设计逐点把材料累积形成面,逐面累积成为体,这一成形原理给材料设计从传统的纳/微观设计向宏观设计发展提供了新契机.增材制造因其独特的冷热循环效应,在微观尺度上易形成异构金属材料(图11c[108]).Lu等[124]和Yao等[125]利用该特性开发出多款低温高强韧性的增材制造多组元合金材料.通过调节增材制造工艺(如增材制造类型、扫描策略、激光功率等)、异种粉末类型和体积分数等参数可以在构件内形成多尺度晶粒或成分梯度结构.Tan等[108]利用直接能量沉积技术(direct energy deposition,DED)制造出具有可控体积分数和空间周期分布的异构金属材料.与大多数报道的线性格式多材料不同,这项工作利用DED空间设计和制造的独特灵活性,通过将2种类型钢(即高强的C300马氏体时效钢和高韧性的316L不锈钢)配置在一个部件空间,从而将2种材料的优点合并,有助于设计出强韧均衡的合金或部件.此外,利用DED技术或选区激光熔化技术制备出双层梯度组织材料已成为材料宏观尺度设计的重要方式,如双梯度SS316L/In718合金等[126],实现了强塑均衡材料的可控制造. ...