Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1523-1532    DOI: 10.11900/0412.1961.2022.00218
  本期目录 | 过刊浏览 |
渣-金界面气泡夹带行为数值物理模拟
周小宾1(), 赵占山2, 汪万行1, 徐建国1, 岳强1
1.安徽工业大学 冶金工程学院 马鞍山 243032
2.日照钢铁控股集团有限公司 ESP制造部 日照 276806
Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface
ZHOU Xiaobin1(), ZHAO Zhanshan2, WANG Wanxing1, XU Jianguo1, YUE Qiang1
1.School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.ESP Department, Rizhao Steel Holding Group Co., Ltd., Rizhao 276806, China
引用本文:

周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
Xiaobin ZHOU, Zhanshan ZHAO, Wanxing WANG, Jianguo XU, Qiang YUE. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. Acta Metall Sin, 2023, 59(11): 1523-1532.

全文: PDF(1758 KB)   HTML
摘要: 

利用物理模拟和数值模拟研究气泡和熔渣不同物性参数对气泡在渣-金界面夹带量的影响。研究结果表明,影响气泡夹带量和渣-金界面面积的主要因素是气泡直径,其次是渣层密度,渣黏度和界面张力对气泡夹带影响相对较小。气泡初始直径由10 mm增大到16 mm,气泡夹带量增大了7.41倍,渣-金界面面积增量最大值增大3.67倍。渣层密度由2000 kg/m3增大到5000 kg/m3,气泡夹带量增大了62.3%,渣-金界面面积最大值增大了13.1%。渣-金界面张力和黏度增大,气泡夹带量和渣-金界面面积均降低。渣-金界面张力从0.65 N/m增大到1.10 N/m,气泡夹带量减小了30.6%,渣-金界面面积最大值减小6.4%。渣层黏度由0.05 Pa·s增大到2.0 Pa·s时,气泡夹带量降低18.4%,渣-金界面面积最大值减小10.2%。

关键词 渣-金界面气泡夹带界面张力数值模拟物理模拟    
Abstract

The flow and interaction between slag, metals, and bubbles are very complicated phenomena in metallurgical processes, such as desulfurization in hot metal pretreatment, steelmaking process in a converter, and second refining process. The molten steel or hot metal can be entrained into the slag when a bubble or bubbles flow through the slag-metal interface during the metallurgical process. The bubble entrainment behavior can increase the heat and mass transfer and, in turn, increase the chemical reaction efficiency of the slag-metal interface. Investigating the entrainment behavior helps in understanding the interaction between bubbles and liquid phases. The current study focuses on the effects of bubbles and slag properties on the bubble entrainment behaviors at the slag-metal interface. The results show that the bubble size is the most important factor influencing the entrainment, followed by the slag density. The slag viscosity and interfacial tension of the slag-metal interface show a weaker effect on the entrainment. In particular, the entrainment volume of steel and maximum area of the slag-metal interface increase by 7.41 and 3.67 times when the bubble diameter increased from 10 to 16 mm, respectively. When the slag density increases from 2000 to 5000 kg/m3, the entrainment volume of steel and maximum area of the slag-metal interface increase by 62.3% and 13.1%, respectively. The increasing in slag viscosity and interfacial tension is less affected by slag entrainment and interface area. The entrainment volume of steel and maximum area of the slag-metal interface are decreased by 30.6% and 6.4% when the interfacial tension of the slag-metal interface increases from 0.65 to 1.10 N/m, respectively. Similarly, when the slag viscosity increases from 0.05 to 2.0 Pa·s, the entrainment volume of steel and maximum area of the slag-metal decrease by 18.4% and 10.2%, respectively.

Key wordsslag-metal interface    bubble entrainment    interfacial tension    mathematical simulation    physical simulation
收稿日期: 2022-05-05     
ZTFLH:  TF7  
基金资助:国家自然科学基金项目(51704006);国家自然科学基金项目(51774004)
通讯作者: 周小宾,zxbahut@ahut.edu.cn,主要从事冶金过程数值物理模拟研究
Corresponding author: ZHOU Xiaobin, Tel: 18955536370, E-mail: zxbahut@ahut.edu.cn
作者简介: 周小宾,男,1985年生,博士
图1  实验装置示意图
MaterialDensity / (kg·m-3)Viscosity / (Pa·s)Surface tension / (N·m-1)Interfacial tension / (N·m-1)
Water10001 × 10-40.0728-
Bubble1.172.125 × 10-5--
Silicone oil (10 mm·s-1)9409.4 × 10-30.0190.0108
Silicone oil (100 mm·s-1)9649.64 × 10-20.02090.0311
Paraffin760.52.8 × 10-30.0290.05
表1  物理实验流体物性参数
图2  计算域及边界条件示意图
图3  几何模型网格划分示意图
ParameterValueUnit
Molten steel density6080kg·m-3
Molten steel viscosity0.0062Pa·s
Molten steel density surface tension1.7N·m-1
Bubble density1.62kg·m-3
Bubble viscosity2.125 × 10-5Pa·s
Bubble diameter10, 12, 14, 16mm
Slag density2000, 3000, 4000, 5000kg·m-3
Slag viscosity0.05, 0.5, 1, 2Pa·s
Slag-metal interfacial tension0.65, 0.8, 0.95, 1.1N·m-1
表2  数值模拟物性参数[27]
图4  不同油-水体系气泡夹带量变化
图5  气泡上升过程的数值模拟和物理模拟结果对比
图6  气泡夹带数值模拟结果和实验结果对比
图7  渣层中钢液体积随时间的变化
图8  不同因素对气泡夹带量的影响
图9  渣-金界面面积变化
图10  物性参数对渣-金界面面积的影响
1 Feng J X. Application of desulphurization technique by magnesium injection in molten iron [J]. Met. Mater. Metall. Eng., 2007, 35(4): 21
1 冯建新. 铁水喷镁脱硫技术的应用 [J]. 金属材料与冶金工程, 2007, 35(4): 21
2 Wang D G, Cheng N L, Zhou X B. Research on the effect of bottom blowing on bath stirring in a 250 t converter [J]. Chin. J. Process Eng., 2020, 20: 678
2 王多刚, 程乃良, 周小宾. 250吨转炉底吹对熔池搅拌的影响研究 [J]. 过程工程学报, 2020, 20: 678
doi: 10.12034/j.issn.1009-606X.219281
3 Mazumdar D, Dhandapani P, Sarvanakumar R. Modeling and optimisation of gas stirred ladle systems [J]. ISIJ Int., 2017, 57: 286
doi: 10.2355/isijinternational.ISIJINT-2015-701
4 Iguchi M, Nakamura K I, Tsujino R. Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection [J]. Metall. Mater. Trans., 1998, 29B: 569
5 Chen Z P, Zhu M Y, Wen G H, et al. Effect of submerged entry nozzle argon blowing on slab quality [J]. Iron Steel, 2009, 44(7): 28
doi: 10.1080/03019233.2016.1153026
5 陈志平, 朱苗勇, 文光华 等. 连铸板坯浸入式水口吹氩工艺研究 [J]. 钢铁, 2009, 44(7): 28
6 Li B K, Yin H B, Zhou C Q, et al. Modeling of three-phase flows and behavior of slag/steel interface in an argon gas stirred ladle [J]. ISIJ Int., 2008, 48: 1704
doi: 10.2355/isijinternational.48.1704
7 Wei G S, Zhu R, Cheng T, et al. Study on the impact characteristics of coherent supersonic jet and conventional supersonic jet in EAF steelmaking process [J]. Metall. Mater. Trans., 2018, 49B: 361
8 Zhao C, Chen W, Zhang L F, et al. Numerical simulation of multiphase flow in converter top blowing process [J]. China Metall., 2018, 28(suppl.1) : 1
8 赵 冲, 陈 威, 张立峰 等. 转炉顶吹过程多相流数值模拟 [J]. 中国冶金, 2018, 28(): 1
9 De Jesús Villela-Aguilar J, Ramos-Banderas J Á, Hernández-Bocanegra C A, et al. Optimization of the mixing time using asymmetrical arrays in both gas flow and injection positions in a dual-plug ladle [J]. ISIJ Int., 2020, 60: 1172
doi: 10.2355/isijinternational.ISIJINT-2019-688
10 Hibbeler L C, Liu R, Thomas B G. Review of mold flux entrainment mechanisms and model investigation of entrainment by shear-layer instability [A]. Proceedings of the 7th ECCC [C]. Dusseldorf, Germany, 2011: 1
11 Yu H Q, Zhu M Y. The interfacial behavior of molten steel and liquid slag in slab continuous casting mold with electromagnetic brake and argon gas injection [J]. Acta Metall. Sin., 2008, 44: 1141
11 于海岐, 朱苗勇. 板坯结晶器电磁制动和吹氩过程的钢/渣界面行为 [J]. 金属学报, 2008, 44: 1141
12 Yang H L, He P, Zhai Y C. Removal behavior of inclusions in molten steel by bubble wake flow based on water model experiment [J]. ISIJ Int., 2014, 54: 578
doi: 10.2355/isijinternational.54.578
13 Li B, Lu H B, Zhong Y B, et al. Numerical simulation for the influence of EMS position on fluid flow and inclusion removal in a slab continuous casting mold [J]. ISIJ Int., 2020, 60: 1204
doi: 10.2355/isijinternational.ISIJINT-2019-666
14 Han Z J, Holappa L. Formation of metal droplets from gas bubbles bursting on iron melt [J]. Steel Res., 2001, 72: 434
doi: 10.1002/srin.2001.72.issue-11-12
15 Han Z J, Holapp L. Bubble bursting phenomenon in gas/metal/slag systems [J]. Metall. Mater. Trans., 2003, 34B: 525
16 Han Z J, Holappa L. Characteristics of iron entrainment into slag due to rising gas bubbles [J]. ISIJ Int., 2003, 43: 1698
doi: 10.2355/isijinternational.43.1698
17 Ekengård J, Andersson A M T, Jönsson P G. Distribution of metal droplets in top slags during ladle treatment [J]. Ironmaking Steelmaking, 2008, 35: 575
doi: 10.1179/174328108X318914
18 Yoshida H, Liu J, Kim S J, et al. Influence of the interfacial tension on the droplet formation by bubble rupture in Sn(Te) and salt system [J]. ISIJ Int., 2016, 56: 1902
doi: 10.2355/isijinternational.ISIJINT-2016-303
19 Song D Y, Maruoka N, Gupta G S, et al. Influence of bottom bubbling rate on formation of metal emulsion in Al-Cu alloy and molten salt system [J]. ISIJ Int., 2012, 52: 1018
doi: 10.2355/isijinternational.52.1018
20 Reiter G, Schwerdtfeger K. Observations of physical phenomena occurring during passage of bubbles through liquid/liquid interfaces [J]. ISIJ Int., 1992, 32: 50
doi: 10.2355/isijinternational.32.50
21 Greene G A, Chen J C, Conlin M T. Onset of entrainment between immiscible liquid layers due to rising gas bubbles [J]. Int. J. Heat Mass Trans., 1988, 31: 1309
doi: 10.1016/0017-9310(88)90073-7
22 Zhao H L, Wang J Q, Zhang W L, et al. Bubble motion and interfacial phenomena during bubbles crossing liquid-liquid interfaces [J]. Processes, 2019, 7: 719
doi: 10.3390/pr7100719
23 Singh K K, Gebauer F, Bart H J. CFD Simulation of the phenomenon of passage of a bubble through the interface between two initially quiescent liquids [J]. Chem. Ing. Tech., 2015, 87: 1047
doi: 10.1002/cite.v87.8
24 Natsui S, Takai H, Kumagai T, et al. Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces [J]. Mater. Trans., 2014, 55: 1707
doi: 10.2320/matertrans.M2014245
25 Boyer F, Lapuerta C. Study of a three component Cahn-Hilliard flow model [J]. ESAIM: Math. Model. Numer. Anal., 2006, 40: 653
doi: 10.1051/m2an:2006028
26 Boyer F, Lapuerta C, Minjeaud S, et al. Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows [J]. Transp. Porous Med., 2010, 82: 463
doi: 10.1007/s11242-009-9408-z
27 Chen J X. Handbook of Steelmaking Data and Diagrams [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 275
27 陈家祥. 炼钢常用图表数据手册 [M]. 第 2版, 北京: 冶金工业出版社, 2010: 275
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[7] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[8] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[9] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[10] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[11] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[13] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.