Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1533-1540    DOI: 10.11900/0412.1961.2022.00202
  本期目录 | 过刊浏览 |
合金溶液中溶质间活度相互作用系数预测模型
居天华1, 舒念1, 何维1, 丁学勇2()
1.广西大学 资源环境与材料学院 南宁 530004
2.东北大学 冶金学院 沈阳 110819
A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions
JU Tianhua1, SHU Nian1, HE Wei1, DING Xueyong2()
1.School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
Tianhua JU, Nian SHU, Wei HE, Xueyong DING. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. Acta Metall Sin, 2023, 59(11): 1533-1540.

全文: PDF(816 KB)   HTML
摘要: 

利用基于组分间性质差建立的统一外推模型(UEM),结合Miedema模型、Tanaka过剩熵关系式,给出了计算任意基体中溶质间活度相互作用系数的模型。该模型不仅在数学上可以覆盖由传统外推模型耦合Miedema模型导出的活度相互作用系数模型,还可以利用组分间的性质差大小定性解释由传统外推模型给出的活度相互作用系数模型的预测特点及其适用体系,且与实验结果吻合良好。

关键词 活度相互作用系数合金溶液Miedema模型外推模型    
Abstract

Activity interaction coefficients for solutes in alloy melts can be predicted by combining Miedema model with extrapolation models. However, the treatment of the binary interaction terms in traditional extrapolation models lacks a clear physical mechanism, which reduces the prediction reliability of models based on traditional extrapolation. The unified extrapolation model (UEM) can mathematically cover all traditional extrapolation models by introducing the contribution coefficient determined by property difference between two elements. In this study, a new model for activity interaction coefficients was built by using UEM to couple with the Miedema model and Tanaka excess entropy relation. The new model can explain the prediction characteristics and application scope of models based on traditional extrapolation in terms of the relation between the contribution coefficient and the property difference. The obtained results favorably agree with the experimental results.

Key wordsactivity interaction coefficient    alloy solution    Miedema model    extrapolation model
收稿日期: 2022-04-29     
ZTFLH:  TF01  
通讯作者: 丁学勇,dingxy@smm.neu.edu.cn,主要从事合金熔体热力学模型的开发及计算的研究
Corresponding author: DING Xueyong, professor, Tel: 13840290680, E-mail: dingxy@smm.neu.edu.cn
作者简介: 居天华,男,1989年生,博士
αki(ij)αkj(ij)αji(ik)αij(jk)Extrapolation model + Miedema modelAsymmetric component
1/21/21/21/2Muggianu model[43] + Miedema model[27-29]-
0100Toop-Kohler model[32] + Miedema model[27-29]i
1000Toop-Kohler model[32] + Miedema model[27-29]j
1/21/211Toop-Muggianu model[34] + Miedema model[27-29]k
0101/2Toop-Muggianu model[34] + Miedema model[27-29]i
101/20Toop-Muggianu model[34] + Miedema model[27-29]j
Similarity coefficient of Chou's model方正汇总行[39]Chou's model[39] + Miedema model[27-29]
表1  本模型中贡献系数值与常见外推模型导出的活度相互作用系数模型之间的对应关系
k-i-jαki(ij)αkj(ij)αji(ik)αij(jk)εji(Calc.)εji(Exp.)
Fe-C-Pb10004.155.73
01001.32
0111-7.56
1011-4.73
1001-1.34
10100.76
0101-4.17
0110-2.07
Fe-C-Mn1000-8.96-1.88
0100-1.62
0111-5.01
1011-12.35
1001-8.96
1010-12.35
0101-1.62
0110-5.01
Fe-Mn-Cr10000.740.90
01000.74
01110.73
10110.74
10010.74
10100.74
01010.73
01100.74
Fe-Al-Si10006.036.97
01006.01
01116.80
10116.82
10016.51
10106.34
01016.49
01106.32
表2  1873 K铁液中活度相互作用系数εCPb、εCMn、εMnCr和εAlSi在贡献系数取不同值条件下的计算值εi(Calc.)j与实验值εi(Exp.)j[6]比较
图1  εCj和εSij模型计算值与实验值[6]的对比
1 Wagner C. Thermodynamics of Alloys [M]. Cambridge, MA: Addison-Wesley Press, 1952: 1
2 Sigworth G K, Elliott J F. The thermodynamics of dilute liquid copper alloys [J]. Can. Metall. Q., 1974, 13: 455
doi: 10.1179/cmq.1974.13.3.455
3 Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys [J]. Met. Sci., 1974, 8: 298
doi: 10.1179/msc.1974.8.1.298
4 Sigworth G K, Elliott J F. The thermodynamics of dilute liquid cobalt alloys [J]. Can. Metall. Q., 1976, 15: 123
doi: 10.1179/cmq.1976.15.2.123
5 Sigworth G K, Elliott J F, Vaughn G, et al. The thermodynamics of dilute liquid nickel alloys [J]. Can. Metall. Q., 1977, 16: 104
doi: 10.1179/cmq.1977.16.1.104
6 Hino M, Ito K. Thermodynamic Data for Steelmaking [M]. Sendai: Tohoku University Press, 2010: 1
7 Mikhailov G G, Zherebtsov D A. On the interaction of calcium and oxygen in liquid iron [J]. Mater. Sci. Forum, 2016, 843: 52
doi: 10.4028/www.scientific.net/MSF.843
8 Sugiyama K, Ueda S, Gao X, et al. Measurement of interaction parameter between Cu and Al in molten high Al steel [J]. ISIJ Int., 2017, 57: 625
doi: 10.2355/isijinternational.ISIJINT-2016-676
9 Niu J P, Shan Z Q, Geng S Q, et al. Calculation of interaction coefficient e N T i and activity coefficient fN of titanium to nitrogen in nickel-based superalloy [J]. Vacuum, 2018, 55(3): 45
doi: 10.1016/S0042-207X(99)00122-0
9 牛建平, 单志强, 耿双奇 等. 镍基高温合金中钛对氮相互作用系数 e N T i 和活度系数fN的计算 [J]. 真空, 2018, 55(3): 45
10 Do K H, Jang J M, Son H S, et al. Effect of silicon on tin formation in liquid iron [J]. ISIJ Int., 2018, 58: 1437
doi: 10.2355/isijinternational.ISIJINT-2018-087
11 Ono H, Miki T, Nakamoto M. Determination of interaction parameters between elements in molten iron by evaporation and chemical equilibration techniques [J]. Tetsu Hagané, 2019, 105: 344
11 小野 英樹, 三木 貴博, 中本 将嗣. 蒸気圧法ならびに化学平衡法による溶鉄中元素間の相互作用パラメータの測定 [J]. 鉄と 鋼, 2019, 105: 344
12 Zajączkowski A, Suruło A. Thermodynamics of copper-rich liquid Cu-Fe-Bi alloys determined by vapour pressure measurements [J]. Calphad, 2019, 64: 272
doi: 10.1016/j.calphad.2018.12.012
13 Alcock C B, Richardson F D. Dilute solutions in molten metals and alloys [J]. Acta Metall., 1958, 6: 385
doi: 10.1016/0001-6160(58)90017-8
14 Alcock C B, Richardson F D. Dilute solutions in alloys [J]. Acta Metall., 1960, 8: 882
doi: 10.1016/0001-6160(60)90157-7
15 Guggenheim E A. Mixtures: The Theory of the Equlibrium Properties of Some Simple Classes of Mixtures Solutions and Alloys [M]. Oxford: Clarendon Press, 1952: 1
16 Lupis C H P, Elliott J F. Generalized interaction coefficients [J]. Acta Metall., 1966, 14: 1019
doi: 10.1016/0001-6160(66)90190-8
17 Tanaka T, Gokcen N A, Iida T, et al. Thermodynamic relationship between the enthalpy interaction parameter and entropy interaction parameter in liquid iron-nitrogen based ternary alloys [J]. Z. Metallkd., 1994, 85: 696
18 Tao D P. Prediction expressions of component activity coefficients in Si-based melts [J]. Metall. Mater. Trans., 2014, 45B: 142
19 Iwata K, Matsumiya T, Sawada H, et al. Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations [J]. Acta Mater., 2003, 51: 551
doi: 10.1016/S1359-6454(02)00437-8
20 Matsumiya T. Estimation of activity coefficients and interaction parameters of solutes in silicon melts [J]. Metall. Mater. Trans., 2012, 43B: 726
21 Ueno S, Waseda Y, Jacob K T, et al. Theoretical treatment of interaction parameters in multicomponent metallic solutions [J]. Steel Res., 1988, 59: 474
doi: 10.1002/srin.1988.59.issue-11
22 Waseda Y. Interaction parameters in metallic solutions estimated from liquid structure and the heat of solution at infinite dilution [J]. High Temp. Mater. Proc., 2012, 31: 203
23 Ding X Y, Wang W Z, Han Q Y. Thermodynamic calculation of Fe-P-j system melt [J]. Acta Metall. Sin., 1993, 29(12): 21
23 丁学勇, 王文忠, 韩其勇. Fe-P-j三元系熔体的热力学计算 [J]. 金属学报, 1993, 29(12): 21
24 Ding X Y, Fan P, Han Q Y. Models of activity and activity interaction parameter in ternary metallic melt [J]. Acta Metall. Sin., 1994, 30(14): 49
24 丁学勇, 范 鹏, 韩其勇. 三元系金属熔体中的活度和活度相互作用系数模型 [J]. 金属学报, 1994, 30(14): 49
25 Ding X Y, Wang W Z, Guo D, et al. Thermodynamic model calculation in copper liquid [J]. Chin. J. Nonferrous Met., 1994, 4(2): 34
25 丁学勇, 王文忠, 郭 丹 等. 铜液中的热力学模型计算 [J]. 中国有色金属学报, 1994, 4(2): 34
26 Ding X Y, Wang W Z, Fan P. Thermodynamic calculation for alloy systems [J]. Metall. Mater. Trans., 1999, 30B: 271
27 Miedema A R, de Châtel P F, de Boer F R. Cohesion in alloys—Fundamentals of a semi-empirical model [J]. Physica B + C, 1980, 100: 1
doi: 10.1016/0378-4363(80)90054-6
28 de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals: Transition Metal Alloys [M]. Amsterdam: North-Holland, 1988: 1
29 Miedema A R. On the heat of formation of solid alloys. II [J]. J. Less-Common Met., 1976, 46: 67
doi: 10.1016/0022-5088(76)90180-6
30 Chou K C, Austin Chang Y. A study of ternary geometrical models [J]. Ber. Bunsenges. Phys. Chem., 1989, 93: 735
doi: 10.1002/bbpc.v93:6
31 Lupis C H P, Elliott J F. Generalized interaction coefficients: Part I: Definitions [J]. Acta Metall., 1966, 14: 529
doi: 10.1016/0001-6160(66)90320-8
32 Toop G W. Predicting ternary activities using binary data [J]. Trans. Metall. Soc. AIME, 1965, 223: 850
33 Ding X Y, Fan P, Luo L H. Thermodynamic Model, Prediction Value and Software Development of Alloy Melt [M]. Shenyang: Northeastern University Press, 1998: 1
33 丁学勇, 范 鹏, 罗利华. 合金熔体的热力学模型、预测值及其软件开发 [M]. 沈阳: 东北大学出版社, 1998: 1
34 Hillert M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases [J]. Calphad, 1980, 4: 1
doi: 10.1016/0364-5916(80)90016-4
35 Chartrand P, Pelton A D. On the choice of “geometric” thermodynamic models [J]. J. Phase Equilib., 2000, 21: 141
doi: 10.1361/105497100770340192
36 Dogan A, Arslan H. Comparative thermodynamic prediction of integral properties of six component, quaternary, and ternary systems [J]. Metall. Mater. Trans., 2015, 46A: 3753
37 Chou K C. A new solution model for predicting ternary thermodynamic properties [J]. Calphad, 1987, 11: 293
doi: 10.1016/0364-5916(87)90048-4
38 Malakhov D V, Tokuda M. “Equidistant method” to estimate thermodynamic properties of multicomponent solutions by using data on binary boundary systems [J]. Mater. Trans. JIM, 1995, 36: 757
doi: 10.1016/j.matdes.2011.12.004
39 Chou K C, Wei S K. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries [J]. Metall. Mater. Trans., 1997, 28B: 439
40 Pelton A D. A general “geometric” thermodynamic model for multicomponent solutions [J]. Calphad, 2001, 25: 319
doi: 10.1016/S0364-5916(01)00052-9
41 Jacob K T, Fitzner K. The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path [J]. Thermochim. Acta, 1977, 18: 197
doi: 10.1016/0040-6031(77)80019-1
42 Kohler F. Estimation of the thermodynamic data for a ternary system from the corresponding binary systems [J]. Monatsh. Chem., 1960, 91: 738
doi: 10.1007/BF00899814
43 Muggianu Y M, Gambino M, Bros J P. Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d'une représentation analytique des grandeurs d'excès intégrales et partielles de mélange [J]. J. Chim. Phys., 1975, 72: 83
doi: 10.1051/jcp/1975720083
44 Fan P, Chou K C. A model for predicting thermodynamic properties of metallic solutions from fundmental physical quantities of constituent elements [J]. Acta Metall. Sin., 1999, 35: 421
44 范 鹏, 周国治. 由组元的物性参数预测金属熔体的热力学性质 [J]. 金属学报, 1999, 35: 421
45 Fan P, Chou K C. A self-consistent model for predicting interaction parameters in multicomponent alloys [J]. Metall. Mater. Trans., 1999, 30A: 3099
46 Zhang N, Chen W L, Chen X Q, et al. Modeling activity and interaction coefficients of components of multicomponent alloy melts: An example of iron melt [J]. High Temp. Mater. Proc., 2013, 32:215
doi: 10.1515/htmp-2012-0123
47 Ju T H, Ding X Y, Chen W L, et al. A new perspective on geometric thermodynamic models [J]. J. Phase Equilib. Diff., 2019, 40: 715
doi: 10.1007/s11669-019-00757-5
48 Ju T H, Ding X Y, Zhang L, et al. A general model for solutes activity interaction parameters in dilute metallic solutions [J]. ISIJ Int., 2020, 60: 2416
doi: 10.2355/isijinternational.ISIJINT-2019-564
49 Tanaka T, Gokcen N A, Morita Z I. Relationship between enthalpy of mixing and excess entropy in liquid binary alloys [J]. Z. Metallkd., 1990, 81: 49
50 Tanaka T, Gokcen N A, Morita Z I, et al. Thermodynamic relationship between enthalpy of mixing and excess entropy in liquid binary alloys [J]. Z. Metallkd., 1993, 84: 192
51 Tanaka T, Gokcen N A, Kumar K C H, et al. Thermodynamic relationship between enthalpy of mixing and excess entropy in solid solutions of binary alloys [J]. Z. Metallkd., 1996, 87: 779
52 Boom R, de Boer F R. Enthalpy of formation of binary solid and liquid Mg alloys—Comparison of Miedema-model calculations with data reported in literature [J]. Calphad, 2020, 68: 101647
doi: 10.1016/j.calphad.2019.101647
53 Neuhausen J, Eichler B. CH0300080 [R]. Villigen: Paul Scherrer Institut, 2003
54 Ju T H, Ding X Y, Zhang L, et al. On the definition of the components' difference in properties in the unified extrapolation model [J]. Fluid Phase Equilib., 2020, 515: 112588
doi: 10.1016/j.fluid.2020.112588
55 Ju T H, Ding X Y, Yan X L, et al. New expression for property difference in components for the unified extrapolation model [J]. J. Mol. Liq., 2020, 320: 114469
doi: 10.1016/j.molliq.2020.114469
[1] 刘力恒,车淳山,孔纲,卢锦堂,张双红. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*[J]. 金属学报, 2016, 52(5): 614-624.
[2] 蒋光锐; 刘源; 李言祥; 苏彦庆; 郭景杰 . 多元合金熔体组元活度系数计算方法的改进[J]. 金属学报, 2007, 43(5): 503-508 .
[3] 乐启炽; 张新建; 崔建忠; 路贵民 . 金属合金溶液热力学模型研究进展[J]. 金属学报, 2003, 39(1): 35-42 .
[4] 侯怀宇; 谢刚 . 用NRTL方程预测三元,四元液态合金体系的热力学数据[J]. 金属学报, 1999, 35(3): 292-295 .
[5] 罗利华;丁学勇;郭丹;曹文斌;邹宗树;王文忠. 活度、活度相互作用系数数据库软件开发[J]. 金属学报, 1998, 34(4): 388-392.
[6] 郭上型;董元篪. Fe-Mn-C-P系高锰熔体的热力学研究[J]. 金属学报, 1995, 31(18): 241-246.
[7] 丁学勇;范鹏;韩其勇. 三元系金属熔体中的活度和活度相互作用系数模型[J]. 金属学报, 1994, 30(14): 49-60.
[8] 丁学勇;王文忠;韩其勇. Fe-P-j三元系熔体的热力学计算[J]. 金属学报, 1993, 29(12): 21-26.
[9] 倪瑞明;马中庭;魏寿昆. Mn-C-j熔体热力学性质的研究[J]. 金属学报, 1990, 26(2): 93-97.
[10] 王丛桦;韩其勇. Ni液中Mg-S反应平衡的研究[J]. 金属学报, 1988, 24(6): 524-526.