Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 773-788    DOI: 10.11900/0412.1961.2017.00525
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
大型铸锭均质化问题及其新解
李军1,2, 夏明许1, 胡侨丹1, 李建国1,2()
1 上海交通大学材料科学与工程学院 上海 200240
2 上海交通大学高新船舶与深海开发装备协同创新中心 上海 200240
Solutions in Improving Homogeneities of Heavy Ingots
Jun LI1,2, Mingxu XIA1, Qiaodan HU1, Jianguo LI1,2()
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(7005 KB)   HTML
摘要: 

铸锭存在严重非均质问题,直接影响最终产品的性能和材料利用率,并制约后续热加工方法和工艺窗口选择。提高铸锭的均质化水平对节能降耗、提高材料利用率、保障构件服役性能和重大装备建设具有重要意义。本文介绍了大型铸锭非均质化因素如成分偏析、夹杂、缩孔/疏松和晶粒不均匀问题及其在后续热加工中的演变,提出了铸锭均质化窗口的概念;介绍分析了大型铸锭凝固过程宏观偏析数值计算和模拟研究的新进展以及提高铸锭均质化水平的新方法;针对冷却速率不均、不可控多相流动和非平衡溶质分凝3个造成铸锭非均质的根本原因,提出了可以根据目标均质化窗口进行铸造过程预设计的层状铸造(layer casting)新方法,建立了层状单元分配和变成分浇注成分控制模型。数值计算模拟和实验验证表明,层状铸造在降低多相流速、均化冷却速率、改变溶质分凝方面效果显著,提高了铸锭的均质化水平,并可大幅度降低设备投资、节能降耗,有望应用于高品质大型铸锭制造。

关键词 大型铸锭宏观偏析数值模拟铸造缺陷层状铸造    
Abstract

The inhomogeneity in large ingots not only decides the final properties of the product, but also restricts downstream hot working processing severely. It is very important to improve the homogeneity of ingots for saving energy, improving material utilization ratio, increasing performance of component, and the construction of key equipment. In this paper, the general inhomogeneity problem in large ingots, such as macrosegregation, inclusion, shrinkage porosity, and large crystal have been introduced. The evolutions of this inhomogeneity in the subsequent hot working processing have also been discussed, based on which the concept of homogeneity window for large ingots has been proposed. The research progress of numerical simulation of macrosegregation in large ingots and some new methods for improving the homogeneity of large ingot have also been introduced and analyzed. Three fundamental reasons for the inhomogeneity of ingots were concluded, i.e. the uneven cooling rate, the uncontrollable multiphase flow, and the solute redistribution during solidification. Aiming at these three fundamental reasons, a novel casting method called layer casting (LC), which has been proposed by our team recently, was introduced to modify the serious inhomogeneity problem in large ingots. In this method, molten alloy was poured into the mold separately and layer upon layer. As soon as the poured molten alloy solidified to a critical volume fraction range, the next layer amount of molten alloy was poured into the mold. For each layer, the mass, composition, and pouring temperature of poured molten alloy could be artificially designed and controlled based on the target homogeneity window. Both experiment and numerical simulated results shown that, in comparison with conventional ingot fabrication method, the LC method can significantly decrease the uncontrollable multiphase flow, uniform the cooling rate, and improve the solute redistribution, subsequently, improve the homogeneity of ingots. For large ingots fabrication, the LC method has the potential to substantially decrease the energy consumption, materials consumption, and the investment of large equipment. Its wide application prospect for high quality large ingots is also expected.

Key wordsheavy ingot    macrosegregation    numerical simulation    cast defect    layer casting
收稿日期: 2017-12-11     
ZTFLH:  TG244  
基金资助:资助项目 国家重点研发计划项目No.2017YFB0305300,国家自然科学基金钢铁联合基金重点项目No.U1660203,国家自然科学基金项目No.51404152和上海市浦江人才支持计划项目No.14PJ1404800
作者简介:

作者简介 李 军,男,1984年生,讲师,博士

引用本文:

李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots. Acta Metall Sin, 2018, 54(5): 773-788.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00525      或      https://www.ams.org.cn/CN/Y2018/V54/I5/773

图1  合金成分和铸锭尺寸对铸锭均匀性的影响示意图
图2  数值计算SA508-3合金中C和Mn含量分布随退火时间的变化
图3  合金铸锭重量随锻件重量的变化
图4  AP1000核岛顶盖锻件的均质化窗口示意图
图5  模铸时浇注量和凝固进程与时间的关系
图6  600 t铸锭冶炼、浇注示意图[22]
图7  真空多包合浇散流浇注
图8  铸锭定成分浇注(140 t)和变成分浇注(140/180 t)铸锭轴线上的C分布[29]
图9  大型铸锭典型宏观偏析类型和硫印形貌[30,31]
图10  数值模拟3.25 t铸锭偏析结果[84]
图11  55 t铸锭宏观偏析模拟结果、实验测量与重构结果、缩松宏观形貌和中心线上宏观偏析分布曲线[83]
图12  三维算例中的A偏析形貌[83]
图13  层状铸造工艺示意图[88]
图14  采用4个50 t炉子熔炼、浇注600 t大型铸锭的层状铸造工艺时序示意图(12次浇注)
图15  传统铸造与层状铸造的铸锭铸态组织、微观组织和晶粒尺寸分布比较[89]
图16  传统铸造与层状铸造Al-Cu铸锭中Cu偏析值和铸锭中心线上Cu分布比较[89]
图17  采用传统铸造工艺和层状铸造工艺制备的100 t钢锭中心线上宏观偏析分布曲线的数值模拟[88]
[1] Zhao J W, Chen X W, Shi Y L, et al.The current stage and development trend of forging technology and defect control for heavy forging[J]. China Metalform. Equip. Manuf. Technol., 2009, 44(4): 23(赵俊伟, 陈学文, 史宇麟等. 大型锻件锻造工艺及缺陷控制技术的研究现状及发展趋势[J]. 锻压装备与制造技术, 2009, 44(4): 23)
[2] Kurz W, Fisher D, translated by Li J G, Hu Q D. Fundamentals of solidification [M]. Beijing: Higher Education Press, 2010: 1(Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 北京: 高等教育出版社, 2010: 1)
[3] Zhang Y.Urgency of domestic production of heavy casting and forging in China[J]. Heavy Mach., 2009, (4): 1(张扬. 我国大型铸锻件应坚持国产化之路[J]. 重型机械, 2009, (4): 1)
[4] Li D Z, Chen X Q, Fu P X, et al.Inclusion flotation-driven channel segregation in solidifying steels[J]. Nat. Commun., 2015, 5: 5572
[5] Ding Z Y, Hu Q D, Zeng L, et al.Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains[J]. Int. J. Miner. Metall. Mater., 2016, 23: 1275
[6] Bitterlin M, Loucif A, Charbonnier N, et al.Cracking mechanisms in large size ingots of high nickel content low alloyed steel[J]. Eng. Fail. Anal., 2016, 68: 122
[7] Zhang X X, Cui Z S, Chen W, et al.A criterion for void closure in large ingots during hot forging[J]. J. Mater. Proc. Technol., 2009, 209: 1950
[8] Iron Steel Institute.Report on the heterogeneity of steel ingots[J]. J. Iron. Steel. I., 1926, 113: 39
[9] Olsson A, West R, Fredriksson H.Macrosegregation in ingots[J]. Scand. J. Metall., 1986, 15: 104
[10] Chvorinov N.Theory of the solidification of castings[J]. Giesserei, 1940, 27: 177
[11] Zhu Y X.Low segregation superalloys[J]. Trans. Met. Heat Treat., 1997, 18(3): 16(朱耀霄. 低偏析高温合金[J]. 金属热处理学报, 1997, 18(3): 16)
[12] Zeng L, Zhang W, Ji Y L, et al.Improving cooling rate during solidification by eliminating the metal-mold interfacial gap[J]. Metall. Mater. Trans., 2015, 46A: 2819
[13] Ling Y F, Hu C J.Application of inner chilling on heavy thick wall steel castings[J]. China Found. Mach. Technol., 2010, (2): 36(凌云飞, 胡昌军. 内冷铁在厚大铸钢件上的应用[J]. 中国铸造装备与技术, 2010, (2): 36)
[14] Sang B G, Kang X H, Li D Z.A novel technique for reducing macrosegregation in heavy steel ingots[J]. J. Mater. Process. Technol., 2010, 210: 703
[15] Zhao J, Yu J H, Li Q J, et al.Structure of slowly solidified 30Cr2Ni4MoV casting with surface pulsed magneto-oscillation[J]. Mater. Sci. Technol., 2015, 31: 1589
[16] Zeng L, Xu M Q, Ma X R, et al.Grain refinement and delta ferrite reduction of high Cr steel ingots by thermal control[J]. ISIJ Int., 2014, 54: 2302
[17] Wang C H, Zhang J, Liu L, et al.Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment[J]. J. Alloys Compd., 2010, 508: 440
[18] Liao X L, Zhao Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[19] Cui J Z, Zhang Z Q, Le Q Z.DC casting of light alloys under magnetic fields[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2046
[20] Liu Q M, Zhai Q J, Qi F P, et al.Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel[J]. Mater. Lett., 2007, 61: 2422
[21] Fu H, Zhou Q, Tan S L.Influence of mechanical vibration on solidification structures of ignition-proof magnesium alloy AZ91D-3Ca[J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 565(付浩, 周全, 谭水淋. 机械振动对AZ91D-3Ca镁合金凝固组织的影响[J]. 特种铸造及有色合金, 2013, 33: 565)
[22] Jiang X L.Research and application of extreme manufacturing technology for 600 tonner low segregation and high purity heavy alloy ingot[J]. Heavy Cast. Forg., 2013, (5): 15(蒋新亮. 600吨级低偏析高纯净特大合金钢锭极限制造技术研究与应用[J]. 大型铸锻件, 2013, (5): 15)
[23] Doub V S, Romashkin A N, Malginov A N.Main trends in the development of technology for casting steel into ingots[J]. Metallurgist, 2013, 57: 487
[24] Gao J J, Ba J T.Research on manufacturing technology of super large steel ingot[J]. Heavy Cast. Forg., 2013, (2): 7(高建军, 巴钧涛. 超大型钢锭制造技术研究[J]. 大型铸锻件, 2013, (2): 7)
[25] Tanaka Y, Sato I.Development of high purity large forgings for nuclear power plants[J]. J. Nucl. Mater., 2011, 417: 854
[26] Tu W T, Zhang X, Shen H F, et al.Numerical simulation on multiple pouring process for a 292 t steel ingot[J]. China Found., 2014, 11: 52
[27] Tu W T, Shen H F, Liu B C.Modelling of macrosegregation in a 231-ton steel ingot with multi-pouring process[J]. Mater. Res. Innov., 2015, 19(Suppl.4): S59
[28] Li J, Liu D R, Kang X H, et al.Numerical simulation of delayed pouring technique for a 360t heavy steel ingot[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2012, 33: 012092
[29] Tateno M.Development of large size high quality steels and their future prospects as "Near Net Shape" material[J]. Trans. Iron Steel Inst. Jpn., 1985, 25: 97
[30] Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
[31] Flemings M C.Principles of control of soundness and homogeneity of large ingots[J]. Scand. J. Metall., 1976, 5: 1
[32] Pickering E J, Chesman C, Al-Bermani S, et al.A comprehensive case study of macrosegregation in a steel ingot[J]. Metall. Mater. Trans., 2015, 46B: 1860
[33] Duan Z H, Tu W T, Shen B Z, et al.Experimental measurements for numerical simulation of macrosegregation in a 36-ton steel ingot[J]. Metall. Mater. Trans., 2016, 47A: 3597
[34] Kawai M.On the Λ segregated zone of large carbon steel ingot (II): Mechanism of formation of the Λ segregated line (Part 2)[J]. ISIJ Int., 1956, 42: 19
[35] Li J, Wu M H, Ludwig A, et al.Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model[J]. Int. J. Heat Mass Tran., 2014, 72: 668
[36] Flemings M C.Solidification processing[M]. New York: McGraw-Hill Book Company, 1974
[37] Shen H F, Chen K X, Liu B C.Numerical simulation of macrosegregation in steel ingot casting[J]. Acta Metall. Sin., 2018, 54: 151(沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54: 151)
[38] Shibata H, Poirier D R, Emi T.Modeling the behavior of Al2O3 inclusions during the dendritic solidification of steel[J]. ISIJ Int., 1998, 38: 339
[39] Qi J H, Wu J, Suo J P, et al.Discussion on the research method of fine inclusions in steel[J]. Metall. Anal., 2010, 30(10): 1(齐江华, 吴杰, 索进平等. 钢中细小夹杂物的研究方法探讨[J]. 冶金分析, 2010, 30(10): 1)
[40] Zhang L F, Thomas B G.State of the art in the control of inclusions during steel ingot casting[J]. Metall. Mater. Trans., 2006, 37B: 733
[41] Liu H W, Fu P X, Kang X H, et al.Formation mechanism of shrinkage and large inclusions of a 70t 12Cr2Mo1 heavy steel ingot[J]. China Found., 2014, 11: 46
[42] Wang M L, Cheng G G, Zhao P, et al.Formation thermodynamics of titanium oxide during solidification of low carbon steel containing titanium[J]. J. Iron Steel Res., 2004, 16(3): 40(王明林, 成国光, 赵沛等. 含钛低碳钢凝固过程中氧化钛形成的热力学[J]. 钢铁研究学报, 2004, 16(3): 40)
[43] Park S C, Jung I H, Oh K S, et al.Effect of Al on the evolution of non-metallic inclusions in the Mn-Si-Ti-Mg deoxidized steel during solidification: Experiments and thermodynamic calculations[J]. ISIJ Int., 2004, 44: 1016
[44] Gu L M, Chen Z P, Xu Y T, et al.Thermodynamic analysis of formation of inclusions in super purity ferritic stainless steel[J]. J. Chin. Rare Earth Soc., 2010, 28(Spec. Issue): 16(顾磊明, 陈兆平, 徐迎铁等. 超纯铁素体不锈钢中夹杂物形成的热力学分析[J]. 中国稀土学报, 2010, 28(专辑): 16)
[45] Wang H P, Sun L F, Peng B, et al.Inclusions for ultra-pure ferritic stainless steels containing 21% chromium[J]. J. Iron Steel Res. Int., 2013, 20: 70
[46] Henschel S, Gleinig J, Lippmann T, et al.Effect of crucible material for ingot casting on detrimental non-metallic inclusions and the resulting mechanical properties of 18CrNiMo7-6 steel[J]. Adv. Eng. Mater., 2017, 19: 1700199
[47] Liu J H, Zhuang C L, Cui X N, et al.Inclusion distribution in ingots investigated by dissection[J]. J. Iron Steel Res. Int., 2014, 21: 660
[48] Zhu H C, Li H B, Zhang S C, et al.Numerical simulation of Mo macrosegregation during ingot casting of high-Mo austenitic stainless steel[J]. Ironmaking Steelmaking, 2015, 42: 748
[49] Hu H J, Yang M B, Luo J, et al.Application of the software ProCAST in the casting of solidification simulation[J]. Mater. Sci. Technol., 2006, 14: 293(胡红军, 杨明波, 罗静等. ProCAST软件在铸造凝固模拟中的应用[J]. 材料科学与工艺, 2006, 14: 293)
[50] Zhou J X, Liu R X, Chen L L, et al.Application of inteCAST software to permanent mold casting[J]. Foundry, 2003, 52: 616(周建新, 刘瑞祥, 陈立亮等. 华铸CAE软件在金属型铸造中的应用[J]. 铸造, 2003, 52: 616)
[51] Zhang Z, Yang J.Application of CASTsoft in low pressure casting[J]. Mechan. Manage. Dev., 2006, (3): 53(张诤, 杨晶. CASTsoft软件在低压铸造中的应用[J]. 机械管理开发, 2006, (3): 53)
[52] Yang J A, Duan Z H, Shen H F, et al.Validation of CAFE model with experimental macroscopic grain structures in a 36-ton steel ingot [A]. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017)[C]. Cham: Springer, 2017
[53] Flemings M C, Nereo G E.Macrosegregation, Part I[J]. Trans. Met. Soc. AIME, 1967, 242: 1449
[54] Fujii T, Poirier D R, Flemings M C.Macrosegregation in a multicomponent low alloy steel[J]. Metall. Trans., 1979, 10B: 331
[55] Ridder S D, Kou S, Mehrabian R.Effect of fluid flow on macrosegregation in axi-symmetric ingots[J]. Metall. Trans., 1981, 12B: 435
[56] Szekely J, Jassal A S.An experimental and analytical study of the solidification of a binary dendritic system[J]. Metall. Trans., 1978, 9B: 389
[57] Bennon W D, Incropera F P.A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
[58] Beckermann C, Viskanta R.Double-diffusive convection during dendritic solidification of a binary mixture[J]. Physicochem. Hydrodyn., 1988, 10: 195
[59] Ganesan S, Poirier D R.Conservation of mass and momentum for the flow of interdendritic liquid during solidification[J]. Metall. Trans., 1990, 21B: 173
[60] Voller V R, Brent A D, Prakash C.The modelling of heat, mass and solute transport in solidification systems[J]. Int. J. Heat Mass Transfer, 1989, 32: 1719
[61] Ahmad N, Rappaz J, Desbiolles J L, et al.Numerical simulation of macrosegregation: A comparison between finite volume method and finite element method predictions and a confrontation with experiments[J]. Metall. Mater. Trans., 1998, 29A: 617
[62] Chiang K C, Tsai H L.Interaction between shrinkage-induced fluid flow and natural convection during alloy solidification[J]. Int. J. Heat Mass Transfer, 1992, 35: 1771
[63] Schneider M C, Beckermann C.Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel[J]. Metall. Mater. Trans., 1995, 26A: 2373
[64] Gu J P, Beckermann C.Simulation of convection and macrosegregation in a large steel ingot[J]. Metall. Mater. Trans., 1999, 30A: 1357
[65] Combeau H, Zalo?nik M, Hans S, et al.Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains[J]. Metall. Mater. Trans., 2009, 40B: 289
[66] Kumar A, Zalo?nik M, Combeau H.Prediction of equiaxed grain structure and macrosegregation in an industrial steel ingot: Comparison with experiment[J]. Int. J. Adv. Eng. Sci. Appl. Mathemat., 2010, 2: 140
[67] Combeau H, Kumar A, Zaloznik M, et al.Macrosegregation prediction in a 65 ton steel ingot [A]. 1st International Conference on Ingot Casting, Rolling and Forging[C]. Brüssel-Saal, 2012
[68] Li W S, Shen H F, Liu B C.Numerical simulation of macrosegregation in steel ingots using a two-phase model[J]. Int. J. Min. Metall. Mater., 2012, 19: 787
[69] Kang J, Zhang C, Wang T, et al.Numerical simulation of the macrostructure evolution of a heavy steel ingot[J]. Mater. Sci. Technol., 2017, 33: 574
[70] Duan Z H, Shen H F, Liu B C.A numerical study of the effect of multiple pouring on macrosegregation in a 438-ton steel ingot[J]. Acta. Metall. Sin.(Engl. Lett.), 2015, 28: 1123
[71] Liu D R, Kang X H, Fu P X, et al.Modeling of macrosegregation in steel ingot: Influence of mold shape and melt superheat[J]. Kovove Mater., 2011, 49: 143
[72] Liu D R, Kang X H, Sang B G, et al.Numerical study of macrosegregation formation of ingot cast in normal sand mold and water-cooled sand mold[J]. Acta Metall. Sin.(Engl. Lett.), 2011, 24: 54
[73] Cao Y F, Chen Y, Li D Z.Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling[J]. Acta Mater., 2016, 107: 325
[74] Li J, Wu M, Hao J, et al.Simulation of channel segregation using a two-phase columnar solidification Model-Part I: Model description and verification[J]. Comput. Mater. Sci., 2012, 55: 407
[75] Li J, Wu M, Hao J, et al.Simulation of channel segregation using a two-phase columnar solidification model-Part II: Mechanism and parameter study[J]. Comput. Mater. Sci., 2012, 55: 419
[76] Wu M H, Ludwig A.A three-phase model for mixed columnar-equiaxed solidification[J]. Metall. Mater. Trans., 2006, 37A: 1613
[77] Ahmadein M, Wu M, Ludwig A.Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4wt.% Cu ingot using a 5-phase model[J]. J. Cryst. Growth, 2015, 417: 65
[78] Wu M H, Ludwig A, Kharicha A.Simulation of as-cast steel ingots[J]. Steel Res. Int., 2017, 89: 1700037
[79] Wu M, Li J, Ludwig A, et al.Modeling diffusion-governed solidification of ternary alloys-Part 2: Macroscopic transport phenomena and macrosegregation[J]. Comput. Mater. Sci., 2014, 92: 267
[80] Wu M, Ludwig A, Kharicha A.A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot[J]. Appl. Math. Modell., 2017, 41: 102
[81] Ge H H, Li J, Han X J, et al.Dendritic model for macrosegregation prediction of large scale castings[J]. J. Mater. Process. Technol., 2016, 227: 308
[82] Ge H H, Ren F L, Li J, et al.Modelling of ingot size effects on macrosegregation in steel castings[J]. J. Mater. Process. Technol., 2018, 252: 362
[83] Ge H H, Ren F L, Li J, et al.Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot[J]. Metall. Mater. Trans., 2017, 48A: 1139
[84] Li J, Ge H H, Wu M H, et al.A columnar & non-globular equiaxed mixed three-phase model based on thermosolutal convection and grain movement[J]. Acta Metall. Sin., 2016, 52: 1096(李军, 葛鸿浩, Wu M H等. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型[J]. 金属学报, 2016, 52: 1096)
[85] Kurz W, Giovanola B, Trivedi R.Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
[86] Li W S, Shen H F, Liu B C.Application of macro segregation mathematical models to large steel ingots[J]. Heavy Cast. Forg., 2012, (6): 38(李文胜, 沈厚发, 柳百成. 宏观偏析数学模型在大型钢锭中的应用[J]. 大型铸锻件, 2012, (6): 38)
[87] Ludwig A, Wu M H, Kharicha A.On macrosegregation[J]. Metall. Mater. Trans., 2015, 46A: 4854
[88] Li J, Wang J G, Ren F L, et al.Experimental and numerical simulation study on layer casting method for composition homogeneity on ingot casting[J]. Acta Metall. Sin., 2018, 54: 118(李军, 王军格, 任凤丽等. 基于成分均匀化的层状铸造方法的实验与模拟研究[J]. 金属学报, 2018, 54: 118)
[89] Ren F L, Wang J G, Ge H H, et al.A homogeneous billet layer casting fabrication method[J]. Metall. Mater. Trans., 2017, 48A: 4453
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[4] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[5] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[6] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[7] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[8] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[9] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[10] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[11] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[12] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[13] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.
[14] 廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
[15] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.