Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 351-357    DOI: 10.11900/0412.1961.2016.00419
  本期目录 | 过刊浏览 |
富Sb相对锌合金在近中性和酸性溶液中耐蚀性的影响
尚秀玲1,张波2(),柯伟2
1 广东美的制冷设备有限公司 佛山 528311
2 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Effect of Sb-Rich Intermetallic Phase on the CorrosionResistance of Zn Alloy in Near-Neutral and Acidic Solutions
Xiuling SHANG1,Bo ZHANG2(),Wei KE2
1 GD Midea Air-Conditioning Equipment Co., LTD., Foshan 528311, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

尚秀玲,张波,柯伟. 富Sb相对锌合金在近中性和酸性溶液中耐蚀性的影响[J]. 金属学报, 2017, 53(3): 351-357.
Xiuling SHANG, Bo ZHANG, Wei KE. Effect of Sb-Rich Intermetallic Phase on the CorrosionResistance of Zn Alloy in Near-Neutral and Acidic Solutions[J]. Acta Metall Sin, 2017, 53(3): 351-357.

全文: PDF(6518 KB)   HTML
  
摘要: 

通过SEM、TEM和电化学测试方法研究了Zn-1.2Sb合金中富Sb相的微观结构和电化学性质。结果表明,Zn-1.2Sb合金中的富Sb第二相Sb∶Zn原子比约为2∶3,但其晶体结构与Sb2Zn3不同。在不同的pH值环境中,电化学测试显示富Sb相的电化学活性比Zn低。富Sb相对Zn耐蚀性的影响有明显差异,在近中性0.1 mol/L NaCl (pH=6.5)溶液中,富Sb相对纯Zn的腐蚀过程作用不明显,对阳极和阴极氧还原反应均没有显著的促进作用;在酸性0.1 mol/L NaCl (pH=3)溶液中,富Sb相显著促进阴极析氢反应,导致锌合金耐蚀性能变差。

关键词 Zn-1.2Sb合金动点位极化析氢反应    
Abstract

In the process of hot-dip galvanizing, some beneficial alloying elements are deliberately added to the molten Zn bath, in order to improve the coating properties, such as formability and corrosion resistance. Sb is one of the interesting alloying additions to the Zn bath, as it can decrease the viscosity and the surface tension of the molten Zn, contributing to producing a uniform Zn coating. Due to the low solid solubility of Sb in molten Zn at galvanising temperature, Sb-rich intermetallic particles were always found in the galvanized layers. The presence of Sb-rich phases may affect the structural properties and corrosion performance of galvanized coating. In the literature, it was reported that small addition of Sb has no significant effect on the structure and growth of galvanized layers, but a higher amount (>1%, mass fraction) of Sb can promote the dendritic solidification of Zn. In order to understand the mechanism of Sb addition on the structure and growth of galvanized coating, it is essential to identify the crystal structure of Sb-rich phases. It was reported that the Sb-rich phases found in the η layer of a galvanized coating corresponds to the electron diffraction patterns of Sb2Zn3. However, some researchers hold that the Sb2Zn3 compound does not exist at room temperature, since it can transform to Sb3Zn4 and Zn at some elevated temperature. Consequently, in this work, the structure of Sb-rich intermetallic phase in the Zn-1.2Sb (1.2%Sb) alloy has been investigated by SEM and TEM. SEM/EDS showed that Sb is present in the form of Sb-rich intermatallic phase and there is no detectable Sb in the Zn solid solution. Transmission electron diffractions analysis and EDS results indicated that the composition of Sb-rich intermatallic phases is close to that of Sb2Zn3, whereas the structure is totally different from the latter. The corrosion resistance of Zn-1.2Sb alloy has been analysed by electrochemcial polarization measurements in the different solutions. The analysed results showed that the Sb-rich phase has no obvious effect on the oxygen reduction reaction, in the aerated 0.1 mol/L NaCl (pH=6.5) solution. However, the Sb-rich phase can promote the hydrogen evolution reaction, in the deaerated acidic solution (0.1 mol/L NaCl, pH=3). Corrosion pits were found in the Zn matrix around the Sb-rich phases by SEM observations, which indicate that Zn has higher activity than Zn-Sb phase.

Key wordsZn-1.2Sb alloy    potentiodynamic polarization    hydrogen evolution reaction
收稿日期: 2016-09-21     
基金资助:国家自然科学基金项目No.51571201
Material Sb Mn Pb Cu Fe Cd Zn
Zn - - 0.003 0.001 <0.001 <0.001 Bal.
Zn-1.2Sb 1.2 - 0.003 0.001 <0.001 <0.001 Bal.
表1  Zn及其合金的化学成分
图1  纯Zn和Zn-1.2Sb合金组织形貌的SEM像、Zn-1.2Sb合金中富Sb相和Zn基体的EDS分析
图2  Zn-1.2Sb合金中富Sb相的TEM像和EDS分析结果
图3  Zn-1.2Sb合金中富Sb第二相的TEM像和电子衍射花样
图4  纯Zn和Zn-1.2Sb合金在近中性0.1 mol/L NaCl (pH=6.5)溶液中的阳极和阴极动电位极化曲线
图5  纯Zn和Zn-1.2Sb合金在近中性0.1 mol/L NaCl (pH=6.5)溶液中的阳极动电位极化后表面腐蚀形貌SEM像
图6  纯Zn和Zn-1.2Sb合金在酸性0.1 mol/L NaCl (pH=3)溶液中的阳极和阴极动电位极化曲线
图7  纯Zn和Zn-1.2Sb合金在酸性0.1 mol/L NaCl (pH=3)溶液中的阳极动电位极化后表面腐蚀形貌SEM像
[1] Frydrych D J.Corrosion mechanisms of zinc-rich organic coatings on steel [D]. Pennsylvania: University of Pennsylvania, 1987
[2] Zhu L.Hot Dip Galvanizing of Steels [M]. Beijing: Chemical Industry Press, 2005: 28
[2] (朱立. 钢材热镀锌 [M]. 北京: 化学工业出版社, 2005: 28)
[3] Hosking N C, Str?m M A, Shipway P H, et al.Corrosion resistance of zinc-magnesium coated steel[J]. Corros. Sci., 2007, 49: 3669
[4] Ramanauskas R, Muleshkova L, Maldonado L, et al.Characterization of the corrosion behaviour of Zn and Zn alloy electrodeposits: Atmospheric and accelerated tests[J]. Corros. Sci., 1998, 40: 401
[5] Hosny A Y, El-Rafei M E, Ramadan T A, et al. Corrosion resistance of zinc coatings produced from a sulfate bath[J]. Met. Finish., 1995, 93: 55
[6] Fratesi R, Roventi G, Branca C, et al.Corrosion resistance of Zn-Co alloy coatings[J]. Surf. Coat. Technol., 1994, 63: 97
[7] Diaz-Ballote L, Ramanauskas R.Improving the corrosion resistance of hot dip galvanized zinc coatings by alloying[J]. Corros. Rev., 1999, 17: 411
[8] Boshkov N.Galvanic Zn-Mn alloys——electrodeposition, phase composition, corrosion behaviour and protective ability[J]. Surf. Coat. Technol., 2003, 172: 217
[9] Münz R, Wolf G K, Guzman L, et al.Zinc/manganese multilayer coatings for corrosion protection[J]. Thin Solid Films, 2004, 459: 297
[10] Leidheiser H Jr, Suzuki I.Technical note: Towards a more corrosion resistant galvanized steel[J]. Corrosion, 1980, 36: 701
[11] Shang X L, Zhang B, Han E H, et al.The effect of 0.4 wt.% Mn addition on the localized corrosion behaviour of zinc in a long-term experiment[J]. Electrochim. Acta, 2012, 65: 294
[12] Shang X L, Zhang B, Han E H, et al.Effect of small addition of Mn on the passivation of Zn in 0.1M NaOH solution[J]. Electrochim. Acta, 2011, 56: 1417
[13] Marder A R.The metallurgy of zinc-coated steel[J]. Prog. Mater. Sci., 2000, 45: 191
[14] Zhang B, Zhou H B, Han E H, et al.Effects of a small addition of Mn on the corrosion behaviour of Zn in a mixed solution[J]. Electrochim. Acta, 2009, 54: 6598
[15] Sebisty J J, Palmer R H.The influence of combined additions of tin, cadmium, antimony and copper on the structure and properties of galvanized coatings [A]. Proceedings of 6th International Conference on Hot Dip Galvanizing[C]. London: Zinc Development Association, 1961: 215
[16] Fasoyino F A, Weinberg F.Spangle formation in galvanized sheet steel coatings[J]. Metall. Trans., 1990, 21B: 549
[17] Rdeker W, Friehe W. Effect of alloy additions on the properties of hot galvanized coatings [A]. Proceedings of 7th International Conference on Hot Dip Galvanizing [C]. Paris: Pergamon Press, 1964: 167
[18] Chang S, Shin J C.The effect of antimony additions on hot dip galvanized coatings[J]. Corros. Sci., 1994, 36: 1425
[19] Hansen M, Elliott R P, Shunk F A.Constitution of Binary Alloys[M]. New York: McGraw-Hill Book Co., 1958: 1
[20] Hanna F, Nassif N.Factors affecting the quality of hot-dip-galvanized steel sheets[J]. Surf. Technol., 1984, 21: 27
[21] Adjadj F, Belbacha E D, Bouharkat M, et al.Crystallographic study of the intermediate compounds SbZn, Sb3Zn4 and Sb2Zn3[J]. J. Alloys Compd., 2006, 419: 267
[22] Izard V, Record M C, Tedenac J C.Mechanical alloying of a new promising thermoelectric material, Sb3Zn4[J]. J. Alloys Compd., 2002, 345: 257
[23] El-Egamy S S. Electrochemical behavior of antimony and antimony oxide films in acid solutions[J]. Corrosion, 2006, 62: 739
[24] Cané E, Fusina L, Tarroni R, et al.High resolution infrared study of SbHD2: The ground state and the Sb-H stretching bands v1 and 2v1[J]. J. Mol. Spectrosc., 2011, 265: 1
[25] Xu R, Ma K, Guo Z.Activation mechanism of Sb2O3 during removal of cobalt from zinc sulphate solution[J]. Hydrometallurgy, 2006, 82: 150
[26] Li H, Zhang B, Wang J Q, et al.Effect of Sb and Mn additions on the corrosion behaviour of Zn[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 257
[26] (李红, 张波, 王俭秋等. 合金元素Sb和Mn对Zn腐蚀的影响. 中国腐蚀与防护学报, 2008, 28: 257)
[1] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.