Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 762-768    DOI: 10.3724/SP.J.1037.2013.00662
  本期目录 | 过刊浏览 |
泡沫SiC负载钴基结构化催化剂的制备及其催化性能*
杨晓丹, 姜春海, 杨振明, 张劲松
中国科学院金属研究所, 沈阳 110016
PREPARATION AND CATALYTIC PROPERTIES OF SiC FOAM SUPPORTED Co-BASED STRUCTURED CATALYSTS
YANG Xiaodan, JIANG Chunhai, YANG Zhenming, ZHANG Jinsong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

杨晓丹, 姜春海, 杨振明, 张劲松. 泡沫SiC负载钴基结构化催化剂的制备及其催化性能*[J]. 金属学报, 2014, 50(6): 762-768.
Xiaodan YANG, Chunhai JIANG, Zhenming YANG, Jinsong ZHANG. PREPARATION AND CATALYTIC PROPERTIES OF SiC FOAM SUPPORTED Co-BASED STRUCTURED CATALYSTS[J]. Acta Metall Sin, 2014, 50(6): 762-768.

全文: PDF(2462 KB)   HTML
摘要: 

以氨酚醛树脂为黏合剂, 将掺Al的Co3O4粉末负载在SiC泡沫上, 再经H2还原制备出SiC负载的钴基结构化催化剂. 采用XRD, SEM, N2吸附-脱附和H2吸附等手段, 研究了还原温度对涂层中Co晶粒的大小、相转化、微观结构以及吸附特性的影响, 并以NaBH4水解放氢反应为探针反应, 研究了不同条件下制备的钴基结构化催化剂的催化活性. 结果表明, 随着还原温度的升高, 泡沫SiC表面涂层中活性组分Co的颗粒尺寸不断增大, 结晶性增强. 在120 ℃时, 活性组分颗粒表面的H2化学等温吸附量随着还原温度的升高而降低, 其催化活性也呈现降低趋势. 当还原温度为400 ℃时, 其催化NaBH4水解放氢的速率最大, 可达48.38 mL/(g·min).

关键词 结构化催化剂硼氢化钠水解    
Abstract

Co-based structured catalysts were prepared by coating Al-doped Co3O4 powder on SiC foam support using phenolic resin as the adhesion agent, followed by H2 reduction at moderate temperatures. XRD, SEM, N2 adsorption-desorption and H2 adsorption measurement were used to characterize the evolution of crystalline size of Co particles, morphology and phase assemblage of the coatings and the H2 adsorption capacities of the structured catalysts obtained at different reduction temperatures. The catalytic properties of the prepared Co-based structured catalysts were evaluated by taking the hydrolysis of NaBH4 as the model hydrogen generation reaction. Growing of the active Co particles in the coating as accompanied by the increase of crystallinity was observed with the increase of reduction temperature, which resulted in decreased chemical adsorption capacity of H2 at 120 ℃ and catalytic activity towards hydrogen generation rate. The highest hydrogen generation rate of 48.38 mL/(g·min) was achieved at the reduction temperature of 400 ℃.

Key wordsstructured    catalyst    sodium borohydride    hydrolysis
    
ZTFLH:  TQ138  
作者简介: null

2013-10-21, 收到修改稿日期: 2014-02-25

作者简介: 杨晓丹, 女, 1981年生, 博士生

图1  还原热处理前钴基结构催化剂的SEM像
图2  空白SiC泡沫及不同还原温度所制备的钴基结构化催化剂的XRD谱
图3  不同还原温度下CoAlO微粉的XRD谱
图4  不同热处理温度下还原得到的钴基SiC结构化催化剂的表面形貌
图5  CoAlO微粉的N2吸附-脱附曲线及孔径分布图
图6  不同还原温度下获得的钴基结构化催化剂在120 ℃和不同压力下的H2吸附量
[1] Shao Q,Long J,He Z F,Tian H P,Duan Q W,Li Y. Orderedly Structured Catalysts and Reactors. Beijing: Chemical Industry Press, 2005: 1
[1] (邵潜,龙军,贺振富,田辉平,段启伟,李阳. 规整结构催化剂及反应器. 北京: 化学工业出版社, 2005: 1)
[2] Cybulski A,Moulijn J A. Structured Catalysts and Reactors. 2nd Ed., New York: CRC Press, 2006: 1
[3] Akdim O, Demirci U B, Brioude A, Miele P. Int J Hydrogen Energy, 2009; 34: 5417
[4] Jeong S U, Kim R K, Cho E A, Kim H J, Nam S W, Oh I H, Hong S A, Kim S H. J Power Sources, 2005; 144: 129
[5] Bai Y, Wu F, Wu C, Yi B L, Zhang H M. Mod Chem Ind, 2006; 26(4): 28
[5] (白莹, 吴峰, 吴川, 衣宝廉, 张华民. 现代化工, 2006; 26(4): 28)
[6] Liu B H, Li Z P, Suda S. J Alloys Compd, 2006; 415: 288
[7] Schärringer P, Müller T E, Jentys A, Lercher J A. J Catal, 2009; 263: 34
[8] Schärringer P, Müller T E, Lercher J A. J Catal, 2008; 253: 167
[9] Schlesinger H I, Brown H C, Finholt A E, Gilbreath J R, Hoekstra H R, Hyde E K. J Am Chem Soc, 1953; 75: 215
[10] Tsai C W, Chen H M, Liu R S, Lee J F, Chang S M, Weng B J. Int J Hydrogen Energy, 2012; 37: 3338
[11] Xu D, Dai P, Liu X, Cao C, Guo Q. J Power Sources, 2008; 182: 616
[12] Zhang X, Zhao J, Cheng F, Liang J, Tao Z, Chen J. Int J Hydrogen Energy, 2010; 35: 8363
[13] Zhao Y, Ning Z, Tian J, Wang H, Liang X, Nie S, Yu Y, Li X. J Power Sources, 2012; 207: 120
[14] Ma H, Ji W, Zhao J, Liang J, Chen J. J Alloys Compd, 2009; 474: 584
[15] Lee J, Kong K Y, Jung C R, Cho E, Yoon S P, Han J, Lee T G, Nam S W. Catal Today, 2007; 120: 305
[16] Oh T H, Kwon S. Int J Hydrogen Energy, 2013; 38: 6425
[17] Sun L, Song Q H, Hu Z Q. Acta Metall Sin, 1996; 32: 63
[17] (孙笠, 宋启洪, 胡壮麒. 金属学报, 1996; 32: 63)
[18] Sun L, Song Q H, Hu Z Q. Acta Metall Sin, 1995; 31: B341
[18] (孙笠, 宋启洪, 胡壮麒. 金属学报, 1995; 31: B341)
[19] Zhang J S, Cao X M, Hu W P, Yang Y J. Chin Pat, 03134039.3, 2003
[19] (张劲松, 曹小明, 胡宛平, 杨永进. 中国专利, 03134039.3, 2003)
[20] Kondo S,Ishikawa T,Abe I. Translated by Li G X. Adsorption Science. 2nd Ed., Beijing: Chemical Industry Press, 2005: 31
[20] (近藤精一,石川达雄,安部郁夫. 李国希 译. 吸附科学. 第二版, 北京: 化学工业出版社, 2005: 31)
[21] Aristov Y I. Appl Therm Eng, 2013; 50: 1610
[22] Boomsma K, Poulikakos D, Ventikos Y. Int J Heat Fluid Flow, 2003; 24: 825
[23] Tan K K, Sam T, Jamaludin H. Int J Heat Mass Transfer, 2003; 46: 2857
[24] Tan K K, Tan Y W, Choong T S Y. Powder Technol, 2009; 191: 55
[25] Huang R F,Wan L Q. Phenolic Resin and Application. Beijing: Chemical Industry Press, 2011: 76
[25] (黄荣发,万里强. 氨酚醛树脂及其应用. 北京: 化学工业出版社, 2011: 76)
[26] Zhang J S, Jiang C H, Yang X D, Xu W G. Chin Pat, 201110156447.4, 2011
[26] (张劲松, 姜春海, 杨晓丹, 许卫刚. 中国专利, 201110156447.4, 2011)
[1] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[2] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[3] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[4] 吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
[5] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
[6] 孙笠;宋启洪;胡壮麒. 急冷Cu_(30)Al_(70)合金的结构及催化特性[J]. 金属学报, 1996, 32(1): 63-68.
[7] 孙守金;魏永良;刘敏;李敏君. 碳纤维表面气相生长碳晶须[J]. 金属学报, 1993, 29(4): 62-67.