Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1645-1654    DOI: 10.11900/0412.1961.2021.00216
  研究论文 本期目录 | 过刊浏览 |
基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究
周丽君1,2, 位松1,2,3, 郭敬东1,2(), 孙方远4(), 王新伟5, 唐大伟5
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
3.桂林电子科技大学 机电工程学院 桂林 541004
4.北京科技大学 能源与环境工程学院 北京 100083
5.大连理工大学 能源与动力学院 大连 116024
Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System
ZHOU Lijun1,2, WEI Song1,2,3, GUO Jingdong1,2(), SUN Fangyuan4(), WANG Xinwei5, TANG Dawei5
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
4.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
5.School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
Lijun ZHOU, Song WEI, Jingdong GUO, Fangyuan SUN, Xinwei WANG, Dawei TANG. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. Acta Metall Sin, 2022, 58(12): 1645-1654.

全文: PDF(2437 KB)   HTML
摘要: 

利用双波长飞秒激光时域热反射系统对微尺度Cu-Sn金属间化合物的热输运性能开展研究。利用回流与时效工艺制备Cu-Sn扩散偶,界面处生成均匀连续的Cu6Sn5和Cu3Sn金属间化合物,材料厚度均在微米量级且Cu6Sn5的(001)晶面具有明显的择优取向特征。由于实验参数对待测参量的敏感度会影响拟合精度,重点分析了铝传感层厚度与加热光调制频率对金属间化合物热导率测量敏感度的影响,以选定具体的实验参数。经测试,Cu6Sn5和Cu3Sn的热导率分别为47.4和87.6 W/(m·K),均略高于已有研究报道,分析认为主要是由于样品制备技术不同而导致的材料微观结构差异所致。讨论了加热光斑尺寸、铝传感层厚度及材料比热容的不确定性对热导率测量误差的影响,得到Cu6Sn5热导率误差为-6.8%~4.6%,Cu3Sn热导率误差为-7.1%~4.4%。本工作表明飞秒激光时域热反射技术在电子封装微尺度金属间化合物热输运特性研究方面具备适用性,所得实测数据对于电子封装热设计及可靠性评价有重要参考意义。

关键词 飞秒激光时域热反射金属间化合物热导率    
Abstract

An accurate temperature analysis of electronic packaging requires an understanding of the thermal-transport parameters of the material. However, studies on the thermal conductivity of intermetallic compounds (IMCs) in micro-interconnect solder joints are scarce, particularly common IMCs forming in Cu-Sn systems, which seriously affect the precise prediction of the temperature field and thermal stress for electronic packaging structures. This work proposes a novel method to quantitatively measure the thermophysical parameters of Cu-Sn IMCs based on the dual-wavelength femtosecond laser time-domain thermoreflectance (TDTR) system. Cu-Sn diffusion couple samples were prepared using a reflow and aging process. Two layers of Cu6Sn5 and Cu3Sn IMCs formed at the interface with micron thickness, and the (001) crystal plane of Cu6Sn5 was the preferred orientation. The sensitivity of the experimental parameters to the measurement parameters affects the fitting accuracy. Therefore, before testing, the effects of the aluminum transducer thickness and pump laser modulation frequency on the phase signal sensitivity in the thermal conductivity measurements of Cu6Sn5 and Cu3Sn were analyzed to help select the specific experimental parameters. After testing, the thermal conductivities of Cu6Sn5 and Cu3Sn were 47.4 and 87.6 W/(m·K), respectively, which are slightly higher than the previous results because of the microstructure discrepancy caused by different material preparation techniques. Finally, the influence of the pump laser diameter, aluminum transducer thickness, and material specific heat on the measurement error of thermal conductivity for Cu6Sn5 and Cu3Sn was examined. The test errors of the Cu6Sn5 and Cu3Sn thermal conductivity were -6.8%~4.6% and -7.1%~4.4%, respectively. Overall, the TDTR technology can evaluate the thermal-transport characteristics of micron-scale intermetallic compounds in electronic packaging and guide the thermal design and reliability evaluations of electronic components.

Key wordsfemtosecond laser    time-domain thermoreflectance    intermetallic compounds    thermal conductivity
收稿日期: 2021-05-19     
ZTFLH:  TG115.25  
基金资助:国家自然科学基金项目(51971231);国家自然科学基金项目(52105327);国家自然科学基金项目(51720105007);国家重大科学仪器开发专项项目(2013YQ120355);中央高校基本科研业务费专项资金项目(FRF-BD-20-09A)
作者简介: 周丽君,女,1989年生,硕士生位 松,男,1990年生,博士生(共同第一作者)
图1  飞秒激光时域热反射(TDTR)实验系统示意图
图2  Cu-Sn扩散偶界面处微观结构的SEM像、EDS分析及XRD谱
图3  Cu6Sn5晶粒取向分布情况
图4  Cu3Sn晶粒取向分布情况
图5  铝传感层厚度和加热光调制频率对Cu6Sn5和Cu3Sn热导率测量所得相位信号敏感度的影响
图6  Cu6Sn5和Cu3Sn热导率测量的相位与幅值信号实验数据与理论拟合曲线
图7  加热光斑直径、铝传感层厚度和材料比热容对Cu6Sn5和Cu3Sn热导率测量结果的影响
ItemRaw data4.2% (cp )-2.1% (cp )1 nm (dAl)-1 nm (dAl)1 μm (Dpump)-1 μm (Dpump)
Error±0.6%-4.0%2.1%1.5%-1.8%0.4%-0.4%
147.045.148.047.746.347.246.8
247.745.848.748.446.947.847.5
347.545.748.548.246.847.747.4
Mean47.445.548.448.146.747.647.2
表1  Cu6Sn5热导率拟合计算结果及误差统计 (W·m-1·K-1)
ItemRaw data4.1% (cp )-1.2% (cp )1 nm (dAl)-1 nm (dAl)1 μm (Dpump)-1 μm (Dpump)
Error±1.4%-4.0%1.3%1.5%-1.5%0.2%-0.2%
189.385.790.490.788.089.589.1
287.183.688.288.485.887.386.9
386.583.087.587.885.286.786.3
Mean87.684.188.789.086.387.887.4
表2  Cu3Sn热导率拟合计算结果及误差统计 (W·m-1·K-1)
1 Braun T, Becker K F, Töpper M, et al. Fan-out wafer and panel level packaging—A platform for 3D integration [A]. 5th IEEE Electron Devices Technology and Manufacturing Conference [C]. Chengdu: IEEE, 2021: 1
2 Liu J H, Zhao H Y, Li Z L, et al. Microstructures and mechanical properties of Cu/Sn/Cu structure ultrasonic-tlp joint [J]. Acta Metall. Sin., 2017, 53: 227
2 刘积厚, 赵洪运, 李卓霖 等. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能 [J]. 金属学报, 2017, 53: 227
3 Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging [J]. Integration, 2018, 60: 204
doi: 10.1016/j.vlsi.2017.09.008
4 Lable R, Ruythooren W, Baert K, et al. Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking [A]. 2008 International Interconnect Technology Conference [C]. Burlingame: IEEE, 2008: 19
5 Oprins H, Cherman V, Beyne E, et al. Thermal performance comparison of advanced 3D packaging concepts for logic and memory integration in mobile cooling conditions [A]. 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. San Diego: IEEE, 2018: 318
6 Oprins H, Beyne E. Thermal analysis of a 3D flip-chip fan-out wafer level package (fcFOWLP) for high bandwidth 3D integration [A]. 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. Las Vegas: IEEE, 2019: 1234
7 Goodson K E, Flik M I. Solid layer thermal-conductivity measurement techniques [J]. Appl. Mech. Rev., 1994, 47: 101
doi: 10.1115/1.3111073
8 Mcconnell A D, Goodson K E. Thermal conduction in silicon micro- and nanostructures [J]. Annu. Rev. Heat Transfer, 2005, 14: 129
doi: 10.1615/AnnualRevHeatTransfer.v14.120
9 Nishi T, Shibata H, Waseda Y, et al. Thermal conductivities of molten iron, cobalt, and nickel by laser flash method [J]. Metall. Mater. Trans., 2003, 34A: 2801
10 Kim J H, Feldman A, Novotny D. Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness [J]. J. Appl. Phys., 1999, 86: 3959
doi: 10.1063/1.371314
11 Al-Ajlan S A. Measurements of thermal properties of insulation materials by using transient plane source technique [J]. Appl. Therm. Eng., 2006, 26: 2184
doi: 10.1016/j.applthermaleng.2006.04.006
12 Bentz D P. Transient plane source measurements of the thermal properties of hydrating cement pastes [J]. Mater. Struct., 2007, 40: 1073
doi: 10.1617/s11527-006-9206-9
13 Ho C Y, Bogaard R H, Gibson C C. Thermophysical and mechanical properties of structural composites and alloys [J]. High Temp.-High Press., 1998, 30: 277
doi: 10.1068/htec178
14 Frederikse H P R, Fields R J, Feldman A. Thermal and electrical properties of copper-tin and nickel-tin intermetallics [J]. J. Appl. Phys., 1992, 72: 2879
doi: 10.1063/1.351487
15 Papadogiannis N A, Moustaïzis S D, Girardeau-Montaut J P. Electron relaxation phenomena on a copper surface via nonlinear ultrashort single-photon photoelectric emission [J]. J. Phys., 1997, 30D: 2389
16 Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals [J]. J. Heat Transfer, 1993, 115: 835
doi: 10.1115/1.2911377
17 Cahill D G, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J]. J. Heat Transfer, 2002, 124: 223
doi: 10.1115/1.1454111
18 Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J]. Phys. Rev., 1999, 59B: 8105
19 Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Phys. Rev., 1993, 48B: 16373
20 Losego M D, Grady M E, Sottos N R, et al. Effects of chemical bonding on heat transport across interfaces [J]. Nat. Mater., 2012, 11: 502
doi: 10.1038/nmat3303 pmid: 22522593
21 Sun F Y, Zhang T, Jobbins M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces [J]. Adv. Mater., 2014, 26: 6093
doi: 10.1002/adma.201400954
22 Park M S, Gibbons S L, Arróyave R. Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions [J]. Acta Mater., 2012, 60: 6278
doi: 10.1016/j.actamat.2012.07.063
23 Lee J B, Hwang H Y, Rhee M W. Reliability investigation of Cu/in TLP bonding [J]. J. Electron. Mater., 2015, 44: 435
doi: 10.1007/s11664-014-3373-1
24 Li J F, Agyakwa P A, Johnson C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process [J]. Acta Mater., 2010, 58: 3429
doi: 10.1016/j.actamat.2010.02.018
25 Zhang W, Ruythooren W. Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking [J]. J. Electron. Mater., 2008, 37: 1095
doi: 10.1007/s11664-008-0487-3
26 Yu C C, Su P C, Bai S J, et al. Nickel-tin solid-liquid inter-diffusion bonding [J]. Int. J. Precis. Eng. Man., 2014, 15: 143
doi: 10.1007/s12541-013-0317-2
27 Sun F Y, Zhu J, Tang D W. Thermal conductivity measurement of liquids using femto-second laser pump-probe technique [J]. Chinese Sci. Bull., 2015, 60: 1320
doi: 10.1360/N972014-01282
27 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测方法测量液体热导率 [J]. 科学通报, 2015, 60: 1320
28 Schmidt A J. Optical characterization of thermal transport from the nanoscale to the macroscale [D]. Cambridge: Massachusetts Institute of Technology, 2008
29 Li D, Franke P, Fürtauer S, et al. The Cu-Sn phase diagram part II: New thermodynamic assessment [J]. Intermetallics, 2013, 34: 148
doi: 10.1016/j.intermet.2012.10.010
30 Yang M. Interfacial reaction between tin-based solders and polycrystalline copper pad [D]. Harbin: Harbin Institute of Technology, 2012
30 杨明. 锡基钎料与多晶铜焊盘界面反应行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
31 Gundrum B C, Cahill D G, Averback R S. Thermal conductance of metal-metal interfaces [J]. Phys. Rev., 2005, 72B: 245426
[1] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[2] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
[5] 周洪宇, 冉珉瑞, 李亚强, 张卫冬, 刘俊友, 郑文跃. 颗粒尺寸对金刚石/Al封装基板热物性的影响[J]. 金属学报, 2021, 57(7): 937-947.
[6] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[7] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[9] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[10] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[11] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[12] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[13] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[14] 张荻, 苑孟颖, 谭占秋, 熊定邦, 李志强. 金刚石/Cu复合界面导热改性及其纳米化研究进展[J]. 金属学报, 2018, 54(11): 1586-1596.
[15] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.