|
|
基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究 |
周丽君1,2, 位松1,2,3, 郭敬东1,2( ), 孙方远4( ), 王新伟5, 唐大伟5 |
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2.中国科学技术大学 材料科学与工程学院 沈阳 110016 3.桂林电子科技大学 机电工程学院 桂林 541004 4.北京科技大学 能源与环境工程学院 北京 100083 5.大连理工大学 能源与动力学院 大连 116024 |
|
Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System |
ZHOU Lijun1,2, WEI Song1,2,3, GUO Jingdong1,2( ), SUN Fangyuan4( ), WANG Xinwei5, TANG Dawei5 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China 4.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China 5.School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
Lijun ZHOU,
Song WEI,
Jingdong GUO,
Fangyuan SUN,
Xinwei WANG,
Dawei TANG.
Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. Acta Metall Sin, 2022, 58(12): 1645-1654.
1 |
Braun T, Becker K F, Töpper M, et al. Fan-out wafer and panel level packaging—A platform for 3D integration [A]. 5th IEEE Electron Devices Technology and Manufacturing Conference [C]. Chengdu: IEEE, 2021: 1
|
2 |
Liu J H, Zhao H Y, Li Z L, et al. Microstructures and mechanical properties of Cu/Sn/Cu structure ultrasonic-tlp joint [J]. Acta Metall. Sin., 2017, 53: 227
|
2 |
刘积厚, 赵洪运, 李卓霖 等. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能 [J]. 金属学报, 2017, 53: 227
|
3 |
Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging [J]. Integration, 2018, 60: 204
doi: 10.1016/j.vlsi.2017.09.008
|
4 |
Lable R, Ruythooren W, Baert K, et al. Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking [A]. 2008 International Interconnect Technology Conference [C]. Burlingame: IEEE, 2008: 19
|
5 |
Oprins H, Cherman V, Beyne E, et al. Thermal performance comparison of advanced 3D packaging concepts for logic and memory integration in mobile cooling conditions [A]. 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. San Diego: IEEE, 2018: 318
|
6 |
Oprins H, Beyne E. Thermal analysis of a 3D flip-chip fan-out wafer level package (fcFOWLP) for high bandwidth 3D integration [A]. 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. Las Vegas: IEEE, 2019: 1234
|
7 |
Goodson K E, Flik M I. Solid layer thermal-conductivity measurement techniques [J]. Appl. Mech. Rev., 1994, 47: 101
doi: 10.1115/1.3111073
|
8 |
Mcconnell A D, Goodson K E. Thermal conduction in silicon micro- and nanostructures [J]. Annu. Rev. Heat Transfer, 2005, 14: 129
doi: 10.1615/AnnualRevHeatTransfer.v14.120
|
9 |
Nishi T, Shibata H, Waseda Y, et al. Thermal conductivities of molten iron, cobalt, and nickel by laser flash method [J]. Metall. Mater. Trans., 2003, 34A: 2801
|
10 |
Kim J H, Feldman A, Novotny D. Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness [J]. J. Appl. Phys., 1999, 86: 3959
doi: 10.1063/1.371314
|
11 |
Al-Ajlan S A. Measurements of thermal properties of insulation materials by using transient plane source technique [J]. Appl. Therm. Eng., 2006, 26: 2184
doi: 10.1016/j.applthermaleng.2006.04.006
|
12 |
Bentz D P. Transient plane source measurements of the thermal properties of hydrating cement pastes [J]. Mater. Struct., 2007, 40: 1073
doi: 10.1617/s11527-006-9206-9
|
13 |
Ho C Y, Bogaard R H, Gibson C C. Thermophysical and mechanical properties of structural composites and alloys [J]. High Temp.-High Press., 1998, 30: 277
doi: 10.1068/htec178
|
14 |
Frederikse H P R, Fields R J, Feldman A. Thermal and electrical properties of copper-tin and nickel-tin intermetallics [J]. J. Appl. Phys., 1992, 72: 2879
doi: 10.1063/1.351487
|
15 |
Papadogiannis N A, Moustaïzis S D, Girardeau-Montaut J P. Electron relaxation phenomena on a copper surface via nonlinear ultrashort single-photon photoelectric emission [J]. J. Phys., 1997, 30D: 2389
|
16 |
Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals [J]. J. Heat Transfer, 1993, 115: 835
doi: 10.1115/1.2911377
|
17 |
Cahill D G, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J]. J. Heat Transfer, 2002, 124: 223
doi: 10.1115/1.1454111
|
18 |
Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J]. Phys. Rev., 1999, 59B: 8105
|
19 |
Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Phys. Rev., 1993, 48B: 16373
|
20 |
Losego M D, Grady M E, Sottos N R, et al. Effects of chemical bonding on heat transport across interfaces [J]. Nat. Mater., 2012, 11: 502
doi: 10.1038/nmat3303
pmid: 22522593
|
21 |
Sun F Y, Zhang T, Jobbins M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces [J]. Adv. Mater., 2014, 26: 6093
doi: 10.1002/adma.201400954
|
22 |
Park M S, Gibbons S L, Arróyave R. Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions [J]. Acta Mater., 2012, 60: 6278
doi: 10.1016/j.actamat.2012.07.063
|
23 |
Lee J B, Hwang H Y, Rhee M W. Reliability investigation of Cu/in TLP bonding [J]. J. Electron. Mater., 2015, 44: 435
doi: 10.1007/s11664-014-3373-1
|
24 |
Li J F, Agyakwa P A, Johnson C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process [J]. Acta Mater., 2010, 58: 3429
doi: 10.1016/j.actamat.2010.02.018
|
25 |
Zhang W, Ruythooren W. Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking [J]. J. Electron. Mater., 2008, 37: 1095
doi: 10.1007/s11664-008-0487-3
|
26 |
Yu C C, Su P C, Bai S J, et al. Nickel-tin solid-liquid inter-diffusion bonding [J]. Int. J. Precis. Eng. Man., 2014, 15: 143
doi: 10.1007/s12541-013-0317-2
|
27 |
Sun F Y, Zhu J, Tang D W. Thermal conductivity measurement of liquids using femto-second laser pump-probe technique [J]. Chinese Sci. Bull., 2015, 60: 1320
doi: 10.1360/N972014-01282
|
27 |
孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测方法测量液体热导率 [J]. 科学通报, 2015, 60: 1320
|
28 |
Schmidt A J. Optical characterization of thermal transport from the nanoscale to the macroscale [D]. Cambridge: Massachusetts Institute of Technology, 2008
|
29 |
Li D, Franke P, Fürtauer S, et al. The Cu-Sn phase diagram part II: New thermodynamic assessment [J]. Intermetallics, 2013, 34: 148
doi: 10.1016/j.intermet.2012.10.010
|
30 |
Yang M. Interfacial reaction between tin-based solders and polycrystalline copper pad [D]. Harbin: Harbin Institute of Technology, 2012
|
30 |
杨明. 锡基钎料与多晶铜焊盘界面反应行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
|
31 |
Gundrum B C, Cahill D G, Averback R S. Thermal conductance of metal-metal interfaces [J]. Phys. Rev., 2005, 72B: 245426
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|