|
|
难熔高熵合金的强韧化途径与调控机理 |
徐流杰1( ), 宗乐2, 罗春阳2, 焦照临2, 魏世忠3( ) |
1.河南科技大学 摩擦学与材料防护教育部工程研究中心 洛阳 471003 2.河南科技大学 材料科学与工程学院 洛阳 471003 3.河南科技大学 金属材料磨损控制与成型技术国家地方联合工程研究中心 洛阳 471003 |
|
Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys |
XU Liujie1( ), ZONG Le2, LUO Chunyang2, JIAO Zhaolin2, WEI Shizhong3( ) |
1.Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Henan University of Science and Technology, Luoyang 471003, China 2.School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China 3.National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China |
引用本文:
徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
Liujie XU,
Le ZONG,
Chunyang LUO,
Zhaolin JIAO,
Shizhong WEI.
Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. Acta Metall Sin, 2022, 58(3): 257-271.
1 |
Tsai Y L , Wang S F , Bor H Y , et al . Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures [J]. Mater. Sci. Eng., 2013, A571: 155
|
2 |
Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
3 |
Senkov O N , Wilks G B , Miracle D B , et al . Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
4 |
Senkov O N , Wilks G B , Scott J M , et al . Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
5 |
Liu C M , Wang H M , Zhang S Q , et al . Microstructure and oxidation behavior of new refractory high entropy alloys [J]. J. Alloys Compd., 2014, 583: 162
|
6 |
Gorr B , Azim M , Christ H J , et al . Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J]. J. Alloys Compd., 2015, 624: 270
|
7 |
Senkov O N , Senkova S V , Dimiduk D M , et al . Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. J. Mater. Sci., 2012, 47: 6522
|
8 |
Gorr B , Mueller F , Christ H J , et al . High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb- 20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
|
9 |
Li J M , Yang X , Zhu R L , et al . Corrosion and serration behaviors of TiZr0.5NbCr0.5V x Mo y high entropy alloys in aqueous environments [J]. Metals, 2014, 4: 597
|
10 |
Jayaraj J , Thinaharan C , Ningshen S , et al . Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
|
11 |
Wang S P , Xu J . TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
|
12 |
Yan D L , Song K K , Sun H G , et al . Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys [J]. J. Mater. Eng. Perform., 2020, 29: 399
|
13 |
Hung S B , Wang C J , Chen Y Y , et al . Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surf. Coat. Technol., 2019, 375: 802
|
14 |
Egami T , Guo W , Rack P D , et al . Irradiation resistance of multicomponent alloys [J]. Metall. Mater. Trans., 2014, 45A: 180
|
15 |
El-Atwani O , Li N , Li M , et al . Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
|
16 |
Waseem O A , Ryu H J . Powder metallurgy processing of a W x TaTiVCr high-entropy alloy and its derivative alloys for fusion material applications [J]. Sci. Rep., 2017, 7: 1926
|
17 |
Li T X , Lu Y P , Cao Z Q , et al . Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
|
17 |
李天昕, 卢一平, 曹志强 等 . 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
|
18 |
Chang S , Tseng K K , Yang T Y , et al . Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127832
|
19 |
Lu Y P , Huang H F , Gao X Z , et al . A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
|
20 |
George E P , Raabe D , Ritchie R O . High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
|
21 |
Yao H W , Qiao J W , Gao M C , et al . NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling [J]. Mater. Sci. Eng., 2016, A674: 203
|
22 |
Chen W , Tang Q H , Wang H , et al . Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy [J]. Mater. Sci. Technol., 2018, 34: 1309
|
23 |
Yurchenko N Y , Stepanov N D , Zherebtsov S V , et al . Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0-1.5) high-entropy alloys [J]. Mater. Sci. Eng., 2017, A704: 82
|
24 |
Senkov O N , Jensen J K , Pilchak A L , et al . Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
|
25 |
Zhang W R , Liaw P K , Zhang Y . Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
|
26 |
Butler T M , Chaput K J , Dietrich J R , et al . High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
|
27 |
Senkov O N , Senkova S V , Miracle D B , et al . Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system [J]. Mater. Sci. Eng., 2013, A565: 51
|
28 |
Senkov O N , Senkova S V , Woodward C , et al . Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis [J]. Acta Mater., 2013, 61: 1545
|
29 |
Long Y , Liang X B , Su K , et al . A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties [J]. J. Alloys Compd., 2019, 780: 607
|
30 |
Takeuchi A , Inoue A . Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
|
31 |
Chang C H , Titus M S , Yeh J W . Oxidation behavior between 700 and 1300oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20: 1700948
|
32 |
Senkov O N , Senkova S V , Woodward C . Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
|
33 |
Senkov O N , Woodward C , Miracle D B . Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
|
34 |
Wang W , Zhang Z T , Niu J Z , et al . Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
|
35 |
Senkov O N , Isheim D , Seidman D N , et al . Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
|
36 |
Huang H L , Wu Y , He J Y , et al . Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
|
37 |
Stepanov N D , Yurchenko N Y , Zherebtsov S V , et al . Aging behavior of the HfNbTaTiZr high entropy alloy [J]. Mater. Lett., 2018, 211: 87
|
38 |
Jiang H , Jiang L , Lu Y P , et al . Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys [J]. Mater. Sci. Forum, 2015, 816: 324
|
39 |
Zhao S F , Yang G N , Ding H Y , et al . A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm [J]. Intermetallics, 2015, 61: 47
|
40 |
Zhao S F , Shao Y , Liu X , et al . Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
|
41 |
Han Z D , Luan H W , Liu X , et al . Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
|
42 |
Senkov O N , Scott J M , Senkova S V , et al . Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
|
43 |
Zhang Y , Yang X , Liaw P K . Alloy design and properties optimization of high-entropy alloys [J]. JOM, 2012, 64: 830
|
44 |
Senkov O N , Woodward C F . Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. Mater. Sci. Eng., 2011, A529: 311
|
45 |
Yang X , Zhang Y , Liaw P K . Microstructure and compressive properties of NbTiVTaAlx high entropy alloys [J]. Procedia Eng., 2012, 36: 292
|
46 |
Chen S Y , Yang X , Dahmen K A , et al . Microstructures and crackling noise of Al x NbTiMoV high entropy alloys [J]. Entropy, 2014, 16: 870
|
47 |
Stepanov N D , Shaysultanov D G , Salishchev G A , et al . Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy [J]. Mater. Lett., 2015, 142: 153
|
48 |
Fazakas É , Zadorozhnyy V , Varga L K , et al . Experimental and theoretical study of Ti20Zr20Hf20Nb20 X20 (X = V or Cr) refractory high-entropy alloys [J]. Int. J. Refract. Met. Hard Mater., 2014, 47: 131
|
49 |
Juan C C , Tsai M H , Tsai C W , et al . Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys [J]. Intermetallics, 2015, 62: 76
|
50 |
Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J]. Mater. Des., 2015, 81: 87
|
51 |
Han Z D , Chen N , Zhao S F , et al . Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys [J]. Intermetallics, 2017, 84: 153
|
52 |
Lin C M , Juan C C , Chang C H , et al . Effect of Al addition on mechanical properties and microstructure of refractory Al x HfNbTaTiZr alloys [J]. J. Alloys Compd., 2015, 624: 100
|
53 |
Stepanov N D , Yurchenko N Y , Skibin D V , et al . Structure and mechanical properties of the AlCr x NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys [J]. J. Alloys Compd., 2015, 652: 266
|
54 |
Wu Y D , Cai Y H , Chen X H , et al . Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys [J]. Mater. Des., 2015, 83: 651
|
55 |
Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound [J]. J. Alloys Compd., 2016, 660: 197
|
56 |
Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite [J]. Intermetallics, 2016, 69: 74
|
57 |
Yao H W , Qiao J W , Gao M C , et al . MoNbTaV medium-entropy alloy [J]. Entropy, 2016, 18: 189
|
58 |
Juan C C , Tseng K K , Hsu W L , et al . Solution strengthening of ductile refractory HfMo x NbTaTiZr high-entropy alloys [J]. Mater. Lett., 2016, 175: 284
|
59 |
Maiti S , Steurer W . Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
60 |
Qiao D X , Jiang H , Chang X X , et al . Microstructure and mechanical properties of VTaTiMoAl x refractory high entropy alloys [J]. Mater. Sci. Forum, 2017, 898: 638
|
61 |
Stepanov N D , Yurchenko N Y , Panina E S , et al . Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy [J]. Mater. Lett., 2017, 188: 162
|
62 |
Zhang M N , Zhou X L , Li J H . Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy [J]. J. Mater. Eng. Perform., 2017, 26: 3657
|
63 |
Waseem O A , Lee J , Lee H M , et al . The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti x WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
|
64 |
Liu Y , Zhang Y , Zhang H , et al . Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites [J]. J. Alloys Compd., 2017, 694: 869
|
65 |
Yao H W , Qiao J W , Hawk J A , et al . Mechanical properties of refractory high-entropy alloys: Eexperiments and modeling [J]. J. Alloys Compd., 2017, 696: 1139
|
66 |
Poulia A , Georgatis E , Mathiou C , et al . Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element [J]. Mater. Chem. Phys., 2018, 210: 251
|
67 |
Zhang Y , Liu Y , Li Y X , et al . Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite [J]. Mater. Lett., 2016, 174: 82
|
68 |
Zhang Y , Liu Y , Li Y X , et al . Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy [J]. Mater. Sci. Forum, 2016, 849: 76
|
69 |
Huang T D , Wu S Y , Jiang H , et al . Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys [J]. Int. J. Miner., Metall. Mater., 2020, 27: 1318
|
70 |
Pang J Y , Zhang H W , Zhang L , et al . Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength [J]. Mater. Lett., 2021, 290: 129428
|
71 |
Chen Y W , Li Y K , Cheng X W , et al . The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity [J]. Materials (Basel), 2018, 11: 208
|
72 |
Chen Y W , Xu Z Q , Wang M , et al . A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties [J]. Mater. Sci. Eng., 2020, A792: 139774
|
73 |
Wu Y D , Cai Y H , Wang T , et al . A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
|
74 |
Lilensten L , Couzinié J P , Bourgon J , et al . Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity [J]. Mater. Res. Lett., 2017, 5: 110
|
75 |
Wei S L , Kim S J , Kang J Y , et al . Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
|
76 |
Senkov O N , Semiatin S L . Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys Compd., 2015, 649: 1110
|
77 |
Sheikh S , Shafeie S , Hu Q , et al . Alloy design for intrinsically ductile refractory high-entropy alloys [J]. J. Appl. Phys., 2016, 120: 164902
|
78 |
Pan J Y , Dai T , Lu T , et al . Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering [J]. Mater. Sci. Eng., 2018, A738: 362
|
79 |
Juan C C , Tsai M H , Tsai C W , et al . Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
|
80 |
Lu Z P , Lei Z F , Huang H L , et al . Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
|
80 |
吕昭平, 雷智锋, 黄海龙 等 . 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
|
81 |
Lei Z F , Liu X J , Wu Y , et al . Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
|
82 |
Chen Y W , Li Y K , Cheng X W , et al . Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5O x (x = 0.05, 0.1, 0.2) high-entropy alloys [J]. Mater. Lett., 2018, 228: 145
|
83 |
Lu Z P , Jiang S H , He J Y , et al . Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
|
83 |
吕昭平, 蒋虽合, 何骏阳 等 . 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183
|
84 |
Fu A , Guo W M , Liu B , et al . A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties [J]. J. Alloys Compd., 2020, 815: 152466
|
85 |
Senkov O N , Couzinie J P , Rao S I , et al . Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J]. Materialia, 2020, 9: 100627
|
86 |
Yang C , Aoyagi K , Bian H K , et al . Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr [J]. Mater. Lett., 2019, 254: 46
|
87 |
Wei S Z , Xu L J . Review on research progress of steel and iron wear-resistant materials [J]. Acta Metall. Sin., 2020, 56: 523
|
87 |
魏世忠, 徐流杰 . 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
|
88 |
Bleck W , Guo X F , Ma Y . The TRIP effect and its application in cold formable sheet steels [J]. Steel Res. Int., 2017, 88: 1700218
|
89 |
Yu Q , Chen Y J , Fang Y . Heterogeneity in chemical distribution and its impact in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 393
|
89 |
余 倩, 陈雨洁, 方 研 . 高熵合金中的元素分布规律及其作用 [J]. 金属学报, 2021, 57: 393
|
90 |
Herrera C , Ponge D , Raabe D . Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
|
91 |
Sun F , Zhang J Y , Marteleur M , et al . Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
|
92 |
Wu Y , Xiao Y H , Chen G L , et al . Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
|
93 |
Senkov O N , Scott J M , Senkova S V , et al . Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
|
94 |
Chen H , Kauffmann A , Gorr B , et al . Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al [J]. J. Alloys Compd., 2016, 661: 206
|
95 |
Chen H , Kauffmann A , Laube S , et al . Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metall. Mater. Trans., 2018, 49A: 772
|
96 |
Chokshi A H . High temperature deformation in fine grained high entropy alloys [J]. Mater. Chem. Phys., 2018, 210: 152
|
97 |
Hadraba H , Chlup Z , Dlouhy A , et al . Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy [J]. Mater. Sci. Eng., 2017, A689: 252
|
98 |
He J Y , Liu W H , Wang H , et al . Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
|
99 |
He J Y , Wang H , Wu Y , et al . High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy [J]. Mater. Sci. Eng., 2017, A686: 34
|
100 |
Yang Y , He Q F . Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
|
100 |
杨 勇, 赫全锋 . 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
|
101 |
Zong L , Xu L J , Luo C Y , et al . Refractory high-entropy alloys: A review of preparation methods and properties [J]. Chin. J. Eng., 2021, 43: 1459
|
101 |
宗 乐, 徐流杰, 罗春阳 等 . 难熔高熵合金: 制备方法与性能综述 [J]. 工程科学学报, 2021, 43: 1459
|
102 |
Lv S S , Zu Y F , Chen G Q , et al . A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness [J]. Mater. Sci. Eng., 2020, A795: 140035
|
103 |
He J Y , Wang H , Huang H L , et al . A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
104 |
Niu S Z , Kou H C , Guo T , et al . Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy [J]. Mater. Sci. Eng., 2016, A671: 82
|
105 |
He F , Wang Z J , Niu S Z , et al . Strengthening the CoCrFeNi-Nb0.25 high entropy alloy by FCC precipitate [J]. J. Alloys Compd., 2016, 667: 53
|
106 |
Ding J , Wang Z J . Local chemical order in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 413
|
106 |
丁 俊, 王章洁 . 高熵合金中的局域化学有序 [J]. 金属学报, 2021, 57: 413
|
107 |
Liu W H , Wu Y , He J Y , et al . Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
|
108 |
Wu D , Zhang J Y , Huang J C , et al . Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals [J]. Scr. Mater., 2013, 68: 118
|
109 |
Otto F , Dlouhý A , Somsen C , et al . The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
|
110 |
Wang Z W , Baker I , Cai Z H , et al . The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
|
111 |
Stepanov N D , Shaysultanov D G , Chernichenko R S , et al . Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. J. Alloys Compd., 2017, 693: 394
|
112 |
Lu Y P , Dong Y , Guo S , et al . A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
|
113 |
Gao X Z , Lu Y P , Zhang B , et al . Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
|
114 |
Jiang L , Lu Y P , Wu W , et al . Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions [J]. J. Mater. Sci. Technol., 2016, 32: 245
|
115 |
Rogal Ł , Kalita D , Litynska-Dobrzynska L . CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 [J]. Intermetallics, 2017, 86: 104
|
116 |
Chen S T , Tang W Y , Kuo Y F , et al . Microstructure and properties of age-hardenable Al x CrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, A527: 5818
|
117 |
Gludovatz B , Hohenwarter A , Catoor D , et al . A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
118 |
Deng Y , Tasan C C , Pradeep K G , et al . Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
|
119 |
Gludovatz B , Hohenwarter A , Thurston K V S , et al . Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
|
120 |
Li Z M , Pradeep K G , Deng Y , et al . Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
121 |
Li Z M , Körmann F , Grabowski B , et al . Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity [J]. Acta Mater., 2017, 136: 262
|
122 |
Wang H W , He Z F , Jia N . Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
|
122 |
王洪伟, 何竹风, 贾 楠 . 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
|
123 |
Kang B , Lee J , Ryu H J , et al . Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process [J]. Mater. Sci. Eng., 2018, A712: 616
|
124 |
Schuh B , Völker B , Todt J , et al . Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
|
125 |
Guo Z M , Zhang A J , Han J S , et al . Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys [J]. J. Mater. Sci., 2019, 54: 5844
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|