Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1614-1626    DOI: 10.11900/0412.1961.2021.00288
  研究论文 本期目录 | 过刊浏览 |
轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响
何长树1,2(), 郄默繁1,2, 张志强1,2, 赵骧1,2
1.东北大学 材料科学与工程学院 沈阳 110819
2.东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819
Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding
HE Changshu1,2(), QIE Mofan1,2, ZHANG Zhiqiang1,2, ZHAO Xiang1,2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
引用本文:

何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
Changshu HE, Mofan QIE, Zhiqiang ZHANG, Xiang ZHAO. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. Acta Metall Sin, 2021, 57(12): 1614-1626.

全文: PDF(5353 KB)   HTML
摘要: 

以7N01-T4合金作为实验材料,采用标识材料示踪法,进行了搅拌摩擦焊(FSW)和超声辅助搅拌摩擦焊(UAFSW)对比实验,重点研究了轴向超声振动与搅拌针螺纹耦合作用下搅拌区(SZ)金属的流动行为。结果表明,施加轴向超声振动没有改变SZ金属沿焊接方向的宏观流动行为(如弧纹间距保持不变),但加剧了轴针影响区(PDZ)金属沿板厚方向的环形涡流运动,同时超声作用下轴肩与搅拌针端部的高频锻压作用促进了轴肩影响区(SDZ)和涡流区(SWZ)金属的流动。在分析轴向超声振动条件下搅拌针周围金属受力状态基础上,提出了微区“抽吸-挤压”效应模型,解释了轴向超声振动提高SZ金属流动能力的本质。当采用有螺纹的搅拌针焊接时,轴向超声振动与搅拌针螺纹的耦合作用所产生的微区“抽吸-挤压”效应导致SZ金属流动能力显著提高。当采用无螺纹的搅拌针焊接时,施加轴向超声振动显著降低搅拌针对SZ金属的剪切作用,导致SZ的金属流动能力减弱,更容易形成焊接缺陷。

关键词 超声辅助搅拌摩擦焊标识材料示踪法搅拌区金属流动行为微区“抽吸-挤压”效应    
Abstract

Metal flow behavior in the stir zone (SZ) is important in friction stir welding (FSW) because it determines the formation of defects, and evolution of microstructure, and affects the mechanical properties of the joint. Applying axial ultrasonic vibration (ultrasonic energy is applied to the stirring tool along the axial direction) during FSW can improve the flowability of SZ metal; however, the reason is unclear. In this study, 6-mm-thick 7N01-T4 alloy plates were welded using FSW and ultrasonic-assisted FSW (UAFSW), using a thin foil of pure aluminum as a marker placed at the butt interface before welding to highlight the actual metal flow during welding. Alongwith the FSW experimental results, the influence of the coupling effect of axial ultrasonic vibration and thread of tool pin on the flow behavior of SZ metal was studied. The results revealed that the macroscopic flow behavior of SZ metal along the welding direction was not affected by axial ultrasonic vibration (e.g., the distance between the arc lines remains unchanged); however, the axial ultrasonic vibration intensified the ring vortex movement of the pin-driven zone (PDZ) metal along the plate-thickness direction. Moreover, the high-frequency forging effect of the shoulder and pin end under the action of ultrasound promoted the flow of metal in the shoulder-driven zone (SDZ) and swirl zone (SWZ). Based on the analysis of the force condition of the plastic metal around the pin, under axial ultrasonic vibration, a microscale sucking-extruding effect model was proposed, and the flowability improvement of SZ metal by axial ultrasonic vibration was explained. The stress superposition and acoustic softening effects induced by ultrasonic vibration are not the only factors affecting the flowability of SZ metal; tool pin geometric features also determine the flow behavior of SZ metal under the action of axial ultrasonic vibration. When a tool with a threaded pin is used for welding, the microscale sucking-extruding effect caused by the coupling of axial ultrasonic vibration and the pin thread improves the SZ metal flowability. When welding using the tool with a smooth pin, axial ultrasonic vibration reduces the shearing effect of the pin on SZ metal, resulting in the weakening of the metal flowability of the SZ, and a high tendency for welding defect formation.

Key wordsultrasonic-assisted friction stir welding    marker material tracer technique    stir zone    metal flow behavior    microscale sucking-extruding effect
收稿日期: 2021-07-12     
ZTFLH:  TG146.2  
基金资助:辽宁省兴辽英才计划项目(XLYC1808038)
作者简介: 何长树,男,1970年生,副教授,博士
图1  超声辅助搅拌摩擦焊(UAFSW)实验装置和搅拌头几何尺寸
图2  不同观察截面的示意图
图3  搅拌摩擦焊(FSW)和UAFSW接头横截面形貌的OM像[22](a) friction stir welding (FSW) joint (b) UAFSW joint
图4  距接头上表面0.2 mm处的搅拌区(SZ)水平截面形貌的OM像(a) FSW joint (b) UAFSW joint
图5  距接头上表面3.0 mm处的SZ水平截面形貌的OM像(a, c) FSW joint (b, d) UAFSW joint
图6  距接头上表面5.2 mm处的SZ水平截面形貌的OM像(a, c) FSW joint (b, d) UAFSW joint
图7  FSW和UAFSW接头纵截面形貌的OM像(a) FSW joint (b) UAFSW joint
图8  FSW过程中SZ金属不同微区受力状态分析和金属流动示意图(a) force condition of the plastic metal in the thread groove of pin(b) force condition of the plastic metal around the conical surface of pin (Fp1, Fp2—pressure forces; Ff1, Ff2—frictional forces; Fr1, Fr2—resultant forces)(c) schematic of plastic metal flow model in the SZ (ND—normal direction, TD—transverse direction, RD—rolling direction)
图9  UAFSW过程中SZ金属不同微区受力状态分析和金属流动示意图(a) force condition of the plastic metal in the thread groove of pin (a—peak vibration amplitude)(b) force condition of the plastic metal around the conical surface of pin (Fu—ultrasonic force, Fr3—resultant force, FR—resultant force of Fu and Fr3)(c) schematic of plastic metal flow model in the SZ
图10  无螺纹搅拌头几何尺寸及其焊接的FSW和UAFSW接头的横截面形貌的OM像
图11  采用无螺纹搅拌头焊接的FSW和UAFSW接头搅拌区铝箔的分布特征
图12  在UAFSW过程中不同螺纹特征产生的微区“抽吸-挤压”效应示意图(a) conventional tool(b) tool with large thread groove depth (h1, h2—thread groove depths, h1 < h2)(c) tool with small pitch (P1, P2—pitches, P1 > P2)
1 Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1
2 Mao Y Q, Ke L M, Chen Y H, et al. Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2018, 34: 228
3 Wang D, Dong C L, Xiao B L, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded AlCuLi alloy joints [J]. Acta Metall. Sin., 2012, 48: 1109
3 王 东, 董春林, 肖伯律等. 焊接参数对AlCuLi合金搅拌摩擦焊接头微观结构和力学性能的影响 [J]. 金属学报, 2012, 48: 1109
4 Dialami N, Cervera M, Chiumenti M. Defect formation and material flow in friction stir welding [J]. Eur. J. Mech., 2020, 80A: 103912
5 Emamian S S, Awang M, Yusof F, et al. Improving the friction stir welding tool life for joining the metal matrix composites [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 3217
6 Çam G. Friction stir welded structural materials: Beyond Al-alloys [J]. Int. Mater. Rev., 2011, 56: 1
7 Campanelli S L, Casalino G, Casavola C, et al. Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy [J]. Materials, 2013, 6: 5923
8 Bang H S, Bang H S, Jeon G H, et al. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel [J]. Mater. Des., 2012, 37: 48
9 Padhy G K, Wu C S, Gao S. Auxiliary energy assisted friction stir welding—Status review [J]. Sci. Technol. Weld. Joining, 2015, 20: 631
10 Shi L, Wu C S, Padhy G K, et al. Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding [J]. Mater. Des., 2016, 104: 102
11 Siddiq A, El Sayed T. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations [J]. Ultrasonics, 2012, 52: 521
12 Barbosa J, Puga H. Ultrasonic melt treatment of light alloys [J]. Int. J. Met., 2019, 13: 180
13 Liu X C, Wu C S. Material flow in ultrasonic vibration enhanced friction stir welding [J]. J. Mater. Process. Technol., 2015, 225: 32
14 Hu Y Y, Liu H J, Fujii H, et al. Effect of ultrasound on microstructure evolution of friction stir welded aluminum alloys [J]. J. Manuf. Processes, 2020, 56: 362
15 Zhang Z Q, He C S, Zhao S, et al. Microstructure and mechanical properties of the stirred zone of ultrasonic assisted friction stir welded joint of 7075-T6 alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41: 1708
15 张志强, 何长树, 赵 夙等. 7075-T6合金超声辅助搅拌摩擦焊接头搅拌区组织与力学性能 [J]. 东北大学学报(自然科学版), 2020, 41: 1708
16 Ding W, Wu C S. Effect of ultrasonic vibration exerted at the tool on friction stir welding process and joint quality [J]. J. Manuf. Processes, 2019, 42: 192
17 Zeng X H, Xue P, Wang D, et al. Material flow and void defect formation in friction stir welding of aluminium alloys [J]. Sci. Technol. Weld. Joining, 2018, 23: 677
18 Su H, Wu C S, Bachmann M, et al. Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding [J]. Mater. Des., 2015, 77: 114
19 Liu F J, Fu L, Zhang W Y, et al. Interface structure and mechanical properties of friction stir welding joint of 2099-T83/2060-T8 dissimilar Al-Li alloys [J]. Acta Metall. Sin., 2015, 51: 281
19 刘奋军, 傅 莉, 张纹源等. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能 [J]. 金属学报, 2015, 51: 281
20 Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding [J]. Scr. Mater., 2015, 102: 95
21 Zhong Y B, Wu C S, Padhy G K. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding [J]. J. Mater. Process. Technol., 2017, 239: 273
22 Zhang Z Q, He C S, Li Y, et al. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43: 1
23 Tao Y, Ni D R, Xiao B L, et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints [J]. Mater. Sci. Eng., 2017, A693: 1
24 Ke L M, Pan J L, Xing L, et al. Sucking-extruding theory for the material flow in friction stir welds [J]. J. Mech. Eng., 2009, 45(4): 89
24 柯黎明, 潘际銮, 邢 丽等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论 [J]. 机械工程学报, 2009, 45(4): 89
25 Ji L. Fundamental research on meso friction stir joining of aeronautical aluminum alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018
25 吉 玲. 航空铝合金微细搅拌摩擦连接技术基础研究 [D]. 南京: 南京航空航天大学, 2018
26 Kang J, Luan G H, Fu R D. Microstructures and mechanical properties of banded textures of friction stir welded 7075-T6 aluminum alloy [J]. Acta Metall. Sin., 2011, 47: 224
26 康 举, 栾国红, 付瑞东. 7075-T6铝合金搅拌摩擦焊焊缝表面带状纹理的组织与性能 [J]. 金属学报, 2011, 47: 224
27 Schneider J A, Nunes Jr A C. Characterization of plastic flow and resulting microtextures in a friction stir weld [J]. Metall. Mater. Trans., 2004, 35B: 777
28 Doude H R, Schneider J A, Nunes Jr A C. Influence of the tool shoulder contact conditions on the material flow during friction stir welding [J]. Metall. Mater. Trans., 2014, 45A: 4411
29 Chen G Q, Li H, Wang G Q, et al. Effects of pin thread on the in-process material flow behavior during friction stir welding: A computational fluid dynamics study [J]. Int. J. Mach. Tools Manuf., 2018, 124: 12
30 Sun Z, Wu C S. A numerical model of pin thread effect on material flow and heat generation in shear layer during friction stir welding [J]. J. Manuf. Processes, 2018, 36: 10
31 Chowdhury S M, Chen D L, Bhole S D, et al. Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch [J]. Mater. Sci. Eng., 2010, A527: 6064
32 Yang K Y, Peng B, Yuan Z Q, et al. Influence of ultrasonic energy on weld formation of friction stir welding of aluminum alloy [J]. J. Beijing Univ. Aeronaut. Astronaut., 2020, 46: 1437
32 杨坤玉, 彭 彬, 袁朝桥等. 超声能对铝合金搅拌摩擦焊焊缝成型的影响 [J]. 北京航空航天大学学报, 2020, 46: 1437
33 Wang X W, Wang C J, Liu Y, et al. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension [J]. Int. J. Plast., 2021, 136: 102879
34 Yao Z H, Kim G Y, Wang Z H, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments [J]. Int. J. Plast., 2012, 39: 75
35 Shi L. Numerical analysis of thermal processes and plastic material flow in ultrasonic vibration enhanced friction stir welding [D]. Jinan: Shandong University, 2016
35 石 磊. 超声振动强化搅拌摩擦焊接热过程及材料流动的数值分析 [D]. 济南: 山东大学, 2016
36 Gungor B, Kaluc E, Taban E, et al. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys [J]. Mater. Des., 2014, 56: 84
37 Wu M X, Wu C S, Gao S. Effect of ultrasonic vibration on fatigue performance of AA 2024-T3 friction stir weld joints [J]. J. Manuf. Processes, 2017, 29: 85
38 Zhang Z Q, He C S, Li Y, et al. Fatigue behaviour of 7N01-T4 aluminium alloy welded by ultrasonic-assisted friction stir welding [J]. Materials, 2020, 13: 4582
[1] 唐旭 张昊 薛鹏 吴利辉 刘峰超 朱正旺 倪丁瑞 肖伯律 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1共晶高熵合金的微观组织及力学性能研究[J]. 金属学报, 0, (): 0-0.
[2] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 姜沐池 宫继双 杨兴远 任德春 蔡雨升 李秉洋 吉海宾 雷家峰. Ti30Ni50Hf20高温形状记忆合金的热变形行为[J]. 金属学报, 0, (): 0-0.
[6] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 陈玉勇 时国浩 杜之明 张宇 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 0, (): 0-0.
[10] 郭杰 黄立清 吴京洋 李俊杰 王锦程 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 0, (): 0-0.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[13] 尚学文 崔潇潇 徐磊 卢正冠. 粉末粒度对钛合金闭式叶轮的成形影响[J]. 金属学报, 0, (): 0-0.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.