Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1627-1636    DOI: 10.11900/0412.1961.2021.00070
  研究论文 本期目录 | 过刊浏览 |
Fe-Co-Ni系组合合金热等静压高通量制备方法初探
赵雷1,2, 王辉1,2, 杨丽霞1,2, 陈学斌3, 郎润秋3, 贺林峰4, 陈东风4, 王海舟1,2()
1.钢铁研究总院 北京材料基因工程高精尖创新中心 北京 100081
2.钢研纳克检测技术股份有限公司 金属材料表征北京市重点实验室 北京 100081
3.北京科技大学 国家材料服役安全科学中心 北京 100083
4.中国原子能科学研究院 核物理研究所 北京 102413
First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy
ZHAO Lei1,2, WANG Hui1,2, YANG Lixia1,2, CHEN Xuebin3, LANG Runqiu3, HE Linfeng4, CHEN Dongfeng4, WANG Haizhou1,2()
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Central Iron & Steel Research Institute, Beijing 100081, China
2.Beijing Key Laboratory of Metal Materials Characterization, The NCS Testing Technology Co. , Ltd. , Beijing 100081, China
3.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
4.Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
引用本文:

赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
Lei ZHAO, Hui WANG, Lixia YANG, Xuebin CHEN, Runqiu LANG, Linfeng HE, Dongfeng CHEN, Haizhou WANG. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. Acta Metall Sin, 2021, 57(12): 1627-1636.

全文: PDF(2882 KB)   HTML
摘要: 

提出基于热等静压工艺的高通量制备新方法,即采用纯Ni和Ti作为蜂巢结构骨架材料,内含不同组元合金粉末的成分梯度设计新思路,成功一次性制备出含有19种不同化学成分的Fe-Co-Ni组合块体合金。高通量成分与组织结构分析表明:蜂巢骨架内各区域成分均匀,含量符合设计要求;混粉均扩散形成合金相;块体合金内部致密度良好,无宏观缺陷。通过对高通量制备Fe-Co-Ni组合试样硬度的分析,探讨了合金化作用机理及其对力学行为的影响规律。铁基和镍基材料均是以固溶强化和第二相强化为主,钴基材料以双相固溶强化为主。对于铁基材料,Ni的强化效果优于Co;对于镍基材料,Fe的强化效果优于Co;对于钴基材料,Ni的强化效果优于Fe。

关键词 热等静压蜂巢结构包套高通量制备组合合金Fe-Co-Ni    
Abstract

Material genome engineering (MGE) is an advanced research concept that integrates high-throughput computing, high-throughput experiment (synthesis and characterization), and a special database. The purpose of MGE is to adopt an efficient and economical method to accelerate the correlation between the composition, microstructure, and performance. However, low composition, small size, characterization difficulty, and high cost limit its application in the high-throughput synthesis of a bulk metal. A new high-throughput synthesis based on hot isostatic pressing (HIP), which uses a honeycomb structure sleeve made of pure Ni and Ti foils, was proposed. A combinatorial-bulk-alloy with 19 gradient components was HIPed by filling different mixtures of pure Fe, Co, and Ni powders into each cell of the honeycomb sleeve. The high-throughput characterization of the composition and microstructure showed that the composition of each cell was homogeneous and in accordance with the design, the mixed powders diffused to the alloy phases, and the bulk alloy had good density and without macroscopic defects. The mechanism of alloying and its effect on the mechanical behavior was discussed by investigating the microhardness of Fe-Co-Ni combinatorial alloy. Fe- and Ni-based alloys were solid solution and second phase strengthened, whereas Co-based alloy was two-phase solid solution strengthened. The strengthening effect of Ni was better than that of Co for Fe-based alloy. The strengthening effect of Fe was better than that of Co for Ni-based alloy. The strengthening effect of Ni was better than that of Fe for Co-based alloy.

Key wordshot isostatic pressing    honeycomb structure sleeve    high-throughput synthesis    combinatorial alloy    Fe-Co-Ni
收稿日期: 2021-02-07     
ZTFLH:  TG142.71  
基金资助:国家重点研发计划项目(2017YFB0701900)
作者简介: 赵 雷,男,1977年生,高级工程师,硕士
图1  热等静压(HIP)高通量制备流程(a) honeycomb structure HIP sleeve (b) HIPed sample(c) combinatorial alloy (d) full view of combinatorial alloy
MaterialDesigned massAnalyzed massNo.
systemratiofraction / %
Simple metalFeFe100.01
Fe-Ni6Fe-1NiFe85.7Ni14.32
3Fe-1NiFe75.0Ni25.03
1Fe-1NiFe49.5Ni50.54
1Fe-3NiFe25.5Ni74.55
1Fe-6NiFe15.2Ni84.86
Simple metalNiNi100.07
Ni-Co6Ni-1CoNi84.3Co15.78
3Ni-1CoNi75.6Co24.49
1Ni-1CoNi51.6Co48.410
1Ni-3CoNi25.4Co74.611
1Ni-6CoNi15.0Co85.012
Simple metalCoCo100.013
Co-Fe6Co-1FeCo84.9Fe15.114
3Co-1FeCo74.0Fe26.015
1Co-1FeCo48.4Fe51.616
1Co-3FeCo24.5Fe75.517
1Co-6FeCo14.1Fe85.918
FeCoNi1Fe-1Co-1NiFe33.8Co33.7Ni32.519
表1  19种Fe-Co-Ni材料体系的组分信息
图2  组合材料组成分布及Fe、Co和Ni元素的二维强度分布图
图3  组合材料的中子成像二维投影图和各组分中子图像灰度值变化曲线
图4  组合材料的OM和SEM像(a) Fe (b) Ni (c) Co (d) 3Fe-1Ni (e) 3Ni-1Co (f) 6Co-1Fe (g) 1Fe-1Co-1Ni(h) 1Ni-1Co (i) 3Co-1Fe (j) Ni, located in the centre of sleeve(k) 6Ni-1Co, located in the half radius of sleeve (l) 1Co-1Fe, located in the fringe of sleeve
图5  组合材料的XRD谱(a) Fe-Ni system (b) Ni-Co system (c) Co-Fe and FeCoNi systems
图6  组合材料的硬度(a) Fe-based (b) Ni-based (c) Co-based
图7  19种组合材料的成分-硬度分布
1 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
1 宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
2 Wang H Z, Xie J X. Editorial for special issue on materials genome engineering [J]. Engineering, 2020, 6: 585
3 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
4 Zhao J C. A combinatorial approach for structural materials [J]. Adv. Eng. Mater., 2001, 3: 143
5 Zhao J C, Zheng X, Cahill D G. High-throughput diffusion multiples [J]. Mater. Today, 2005, 8: 28
6 Zhao J C. Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships [J]. Prog. Mater. Sci., 2006, 51: 557
7 Kauffmann A, Stüber M, Leiste H, et al. Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni [J]. Surf. Coat. Technol., 2017, 325: 174
8 Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels [J]. Acta Mater., 2012, 60: 4950
9 Springe, H, Belde M, Raabe D. Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability [J]. Mater. Des., 2016, 90: 1100
10 Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties [J]. Acta Mater., 2016, 116: 63
11 Nie J J, Wei L, Li D L, et al. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431 graded material [J]. Addit. Manuf., 2020, 35: 101295
12 Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals [J]. Nat. Mater., 2020, 19: 712
13 Xing H, Zhao B B, Wang Y J, et al. Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach [J]. ACS Comb. Sci., 2018, 20: 127
14 Priimets J, Ugaste Ü. Relations between diffusion paths and interdiffusion coefficients in the ternary system Fe-Co-Ni [J]. Defect Diffus. Forum, 2012, 326-328: 209
15 Shi Y S, Wei Q S, Xue P J, et al. Hot Isostatic Pressing Integral Forming Technology for Complex Metal Parts [M]. Wuhan: Huazhong University of Science and Technology Press, 2018: 7
15 史玉升, 魏青松, 薛鹏举等. 复杂金属零件热等静压整体成形技术 [M]. 武汉: 华中科技大学出版社, 2018: 7
16 Qu X H, Zhang G Q, Zhang L. Applications of powder metallurgy technologies in aero-engines [J]. J. Aeronaut. Mater., 2014, 34: 1
16 曲选辉, 张国庆, 章 林. 粉末冶金技术在航空发动机中的应用 [J]. 航空材料学报, 2014, 34: 1
17 He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
17 和思亮, 赵云松, 鲁 凡等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56: 1195
18 Ma F K. Isostatic Pressing Technique [M]. Beijing: Metallurgical Industry Press, 1992: 14
18 马福康. 等静压技术 [M]. 北京: 冶金工业出版社, 1992: 14
19 Xie R, Lü Z, Lu C Y, et al. Characterization of nanosized precipitates in 9Cr-ODS steels by SAXS and TEM [J]. Acta Metall. Sin., 2016, 52: 1053
19 谢 锐, 吕 铮, 卢晨阳等. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究 [J]. 金属学报, 2016, 52: 1053
20 Feng Y F, Zhou X M, Zou J W, et al. Interface reaction mechanism between SiO2 and matrix and its effect on the deformation behavior of inclusions in powder metallurgy superalloy [J]. Acta Metall. Sin., 2019, 55: 1437
20 冯业飞, 周晓明, 邹金文等. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响 [J]. 金属学报, 2019, 55: 1437
21 Tian T, Hao Z B, Jia C L, et al. Microstructure and properties of a new third generation powder metallurgy superalloy FGH100L [J]. Acta Metall. Sin., 2019, 55: 1260
21 田 甜, 郝志博, 贾崇林等. 新型第三代粉末高温合金FGH100L的显微组织与力学性能 [J]. 金属学报, 2019, 55: 1260
22 Liang J K, Hou X Y, Cui Y, et al. Effect of sintering temperature on microstructures and mechanical properties of Co-based wear-resistant alloy [J]. Powder Metall. Technol., 2017, 35: 188
22 梁锦奎, 侯星宇, 崔 宇等. 烧结温度对钴基耐磨合金微观组织和性能的影响 [J]. 粉末冶金技术, 2017, 35: 188
23 Zheng B K, Che H Y. Analysis of wear resistance and corrosion resistance of hard materials prepared by hot isostatic pressing [J]. Powder Metall. Ind., 2018, 28(6): 56
23 郑秉堃, 车洪艳. 热等静压制备硬质材料的耐磨耐腐蚀性能分析 [J]. 粉末冶金工业, 2018, 28(6): 56
24 Jones N G, Christofidou K A, Mignanelli P M, et al. Influence of elevated Co and Ti levels on polycrystalline powder processed Ni-base superalloy [J]. Mater. Sci. Technol., 2014, 30: 1853
25 Wang X F, He W W, Zhu J L, et al. Microstructure and mechanical properties of Fe-Co-Ni based superalloy prepared by hot isostatic pressing [J]. Powder Metall. Technol., 2020, 38: 371
25 王新锋, 贺卫卫, 朱纪磊等. 热等静压铁钴镍基高温合金的显微组织和力学性能 [J]. 粉末冶金技术, 2020, 38: 371
26 Sun C F, Dang X F, Li S W, et al. Sintering properties and microstructure of Fe-Ni-Co-based superalloy atomized powder [J]. Rare Met. Mater. Eng., 2016, 45: 3115
26 孙崇锋, 党晓凤, 李生文等. 铁镍钴基高温合金雾化粉末烧结特性及显微组织 [J]. 稀有金属材料与工程, 2016, 45: 3115
27 Wang H Z, Jia Y H, Zhao L, et al. A method of high-throughput hot isostatic pressing micro-synthesis for the combinatorial materials and a sleeve mould [P]. Chin Pat, 201910014812.4, 2020
27 王海舟, 贾云海, 赵 雷等. 一种组合材料热等静压高通量微制造方法及其包套模具 [P]. 中国专利, 201910014812.4, 2020)
28 Yang L X, He L F, Huang D Qet al. Three-dimensional hydrogen distribution and quantitative determination of titanium alloys via neutron tomography [J]. Analyst, 2020,145: 4156
29 Nikolay K, Robin W, Ingo M. Chapter 3 - Neutron Imaging, In Advanced Nanomaterials, Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage [M]. Amsterdam: Elsevier, 2019: 49
30 Лякишев Н П, translated by Guo Q Wet al. Handbook of Phase Diagrams for Metal Binary Systems [M]. Beijing: Chemical Industry Press, 2009: 408, 421, 597
30 Лякишев Н П著, 郭青蔚等译. 金属二元系相图手册 [M]. 北京: 化学工业出版社, 2009: 408, 421, 597
31 Jen S U, Chiang H P, Chung C M, et al. Magnetic properties of Co-Fe-Ni films [J]. J. Magn. Magn. Mater., 2001, 236: 312
[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[4] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[5] 张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.
[6] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[7] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[8] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[9] 姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050.
[10] 姚瑶,董建新,姚志浩,张麦仓, 国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律:II. 模型验证及实验分析[J]. 金属学报, 2013, 49(9): 1051-1060.
[11] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[12] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.
[13] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[14] 盛立远 郭建亭 章炜 谢亿 周兰章 叶恒强. 热等静压和热处理对快凝NiAl--Cr(Mo)--Hf共晶合金显微组织和压缩性能的影响[J]. 金属学报, 2009, 45(9): 1025-1029.
[15] 张宇鹏; 张新平; 钟志源 . 梯度孔隙率大孔隙尺寸NiTi形状记忆合金制备及其相变和超弹性行为[J]. 金属学报, 2007, 43(11): 1221-1227 .