Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 253-264    DOI: 10.11900/0412.1961.2022.00533
  研究论文 本期目录 | 过刊浏览 |
粉末粒度对钛合金闭式叶轮成形的影响
尚学文1,2, 崔潇潇2, 徐磊2, 卢正冠2()
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Powder Particle Size on Forming Titanium Alloy Shrouded Impeller
SHANG Xuewen1,2, CUI Xiaoxiao2, XU Lei2, LU Zhengguan2()
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

尚学文, 崔潇潇, 徐磊, 卢正冠. 粉末粒度对钛合金闭式叶轮成形的影响[J]. 金属学报, 2025, 61(2): 253-264.
Xuewen SHANG, Xiaoxiao CUI, Lei XU, Zhengguan LU. Effect of Powder Particle Size on Forming Titanium Alloy Shrouded Impeller[J]. Acta Metall Sin, 2025, 61(2): 253-264.

全文: PDF(2949 KB)   HTML
摘要: 

为了考察粉末不同批次间的粒度差异对成形钛合金产品的性能和尺寸影响,本工作选取了3种粒度(平均粒度D50 = 125、94和73 μm)的Ti-5Al-2.5Sn ELI预合金粉末,采用粉末冶金热等静压工艺在940 ℃、120 MPa、3 h的制度下制备了闭式叶轮,对各叶轮进行了815 ℃、1.5 h的退火热处理,通过X射线检测等技术探测了叶轮中可能存在的孔隙缺陷,利用SEM和TEM对显微组织进行观察,并结合低温拉伸实验分析了粉末粒度对闭式叶轮本体力学性能的影响。结果表明,采用不同粒度粉末制备出的叶轮各部位显微组织均匀,本体取样力学性能均达到变形态合金水平,77 K下试棒的抗拉强度约1300 MPa,延伸率可达20%,在拉伸断口附近的组织中观察到{101¯2}、{101¯1}、{112¯2}孪晶。对成形的闭式叶轮尺寸的测绘结果表明,叶轮的尺寸收缩特点与粉末粒度相关,粉末的平均粒度(D50:70~130 μm)越小,体积收缩越大。采用有限元方法对粉末冶金热等静压成形后叶轮尺寸进行预测,并与制备的叶轮实测尺寸进行对比。结果表明,模拟预测的收缩规律与实际尺寸收缩一致,其中内部流道区域预测偏差值小于0.3 mm。

关键词 闭式叶轮粉末粒度Ti-5Al-2.5Sn ELI热等静压有限元仿真    
Abstract

A shrouded impeller is an essential component of a liquid rocket, mainly responsible for transporting and pressurizing liquid fuel or oxidant. Owing to the low temperature and high-rotation speed of the working environment, materials with high performance are required for fabricating the impeller. With its excellent low temperature mechanical properties and high specific strength, Ti-5Al-2.5Sn extra-low interstitial (ELI) alloy has been widely applied in fabricating liquid rocket components, including the shrouded impeller. Considering the geometric complexity of the impeller, the powder metallurgy-hot isostatic pressing (PM-HIP) route is a suitable method for impeller formation. PM-HIP technology has a similar forming capability as precision casting but avoids casting defects, realizing the parts with reliable service performance. However, the mechanical properties and dimensional accuracy of the impeller may be influenced by the variation of powder particle sizes. Herein, three kinds of Ti-5Al-2.5Sn ELI prealloyed powders with different particle size distributions (average particle size D50 = 125, 94, and 73 μm) were prepared by adjusting the process parameters of gas atomization and screen meshes. Then, their corresponding shrouded impellers were manufactured via the PM-HIP route at 940 oC, 120 MPa for 3 h. Subsequently, the impellers were annealed at 815 oC for 1.5 h, followed by air cooling. The effect of powder particle sizes on the mechanical properties of shrouded impellers was analyzed using cryogenic-temperature tensile tests. The porosity defect of impeller slices was detected using industrial computed tomography. The microstructure of the impellers was characterized using SEM and TEM. Meanwhile, the mechanism of low temperature deformation was also discussed. All three impellers exhibited homogeneous microstructure with fine grains, and their mechanical properties were comparable to the level of wrought alloys; specifically, the tensile strength was about 1300 MPa, and the elongation was 20% at 77 K. In addition, many twins were found in the deformation zones, including the types of {101¯2}, {101¯1}, and {112¯2}. PM-HIP impeller size was calculated using the finite element method in the modified Gurson model and compared with the size of the actual impeller. Dimensional shrinkage was consistent between the finite element simulation result and the actual part, and the deviation in the flow channel was < 0.3 mm.

Key wordsshrouded impeller    powder particle size    Ti-5Al-2.5Sn ELI    hot isostatic pressing    finite element method
收稿日期: 2022-10-21     
ZTFLH:  TG146.23  
基金资助:国家科技重大专项项目(J2019-VII-0005-0145);中国科学院战略性先导科技专项项目(XDA22010102)
通讯作者: 卢正冠,zglu@imr.ac.cn,主要从事粉末近净成形技术研究
Corresponding author: LU Zhengguan, Tel: (024)83978843, E-mail: zglu@imr.ac.cn
作者简介: 尚学文,男,1996年生,硕士生
图1  3种预合金粉末的粒度分布
Powder No.AlSnFeCSiHNOTi
1#5.022.580.0090.00970.0080.00340.00430.10Bal.
2#5.012.570.0090.00990.0080.00380.00440.10Bal.
3#5.022.530.0090.00770.0090.00170.00510.11Bal.
表1  3种预合金粉末的化学成分与杂质含量 (mass fraction / %)
图2  闭式叶轮包套型芯的装配关系与实物图
图3  闭式叶轮的近净成形流程与力学性能测试取样示意图
Forming methodTemperatureσUTS / MPaσYS / MPaEL / %
PM-HIPRT885083617.5
(powder 1#)886083418.5
77 K1290118019.5
1277118820.0
20 K1553146118.5
1559143020.0
1278121515.5
Wrought[16]RT848-18.0
77 K1290-13.5
20 K1587-15.0
Cast[17]RT741068513.0
74406907.0
20 K1288-10.0
1294-7.5
表2  不同成形方式的Ti-5Al-2.5Sn超低间隙(ELI)合金力学性能对比[16,17]
图4  闭式叶轮本体取样的缺陷检测
Sample No.Oxygen contentIncrease of oxygen
1#0.110.01
2#0.110.01
3#0.130.02
表3  不同叶轮本体取样的O元素含量 (mass fraction / %)
图5  叶轮本体取样的低温(77 K)力学性能
图6  闭式叶轮本体拉伸试样断口SEM像(77 K)
图7  不同温度下Ti-5Al-2.5Sn ELI合金的力学性能分布与应力-应变关系曲线
图8  Ti-5Al-2.5Sn ELI合金低温变形组织(77 K)的孪晶TEM明场像及电子衍射花样
图9  Ti-5Al-2.5Sn ELI合金低温变形组织中的孪晶分布
图10  有限元模拟叶轮尺寸收缩前后对比
图11  闭式叶轮模拟与实测值的相对位置关系
Type0102030405
Powder 1#89.9265.6965.738.415.14
Powder 2#88.4265.1765.178.575.17
Powder 3#85.9064.7864.968.695.10
FEM86.5865.1864.618.405.00
Maximum deviation3.34 (3.71%)0.51 (0.78%)1.12 (1.70%)0.29 (3.34%)0.17 (3.33%)
Minimum deviation0.68 (0.80%)0.01 (0.02%)0.35 (0.54%)0.01 (0.12%)0.10 (1.96%)
表4  闭式叶轮特定位置(见图11a)的尺寸实测值与模拟值的对比 (mm)
1 Volkov A M, Karyagin D A, Letnikov M N, et al. Specifics of producing disk blanks for gas-turbine engines using granules of super heat-resistant nickel alloys [J]. Metallurgist, 2020, 64: 362
2 Hashiguchi D H, Heberling J, Campbell J, et al. New decade of shaped beryllium blanks [A]. Proceedings of SPIE 9574, Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems [C]. San Diego: SPIE, 2015: 957403
3 Sergi A, Khan R H U, Irukuvarghula S, et al. Development of Ni-base metal matrix composites by powder metallurgy hot isostatic pressing for space applications [J]. Adv. Powder Technol., 2022, 33:103411
4 Qian Z D, Wang H. Russian pд hydrogen-oxygen engine technology [R]. Technical Report on Aerospace, 1995: 12
4 钱宗德, 王 桁. 俄罗斯pд—0120氢氧发动机技术 [R]. 航天技术报告, 1995: 12
5 Guichard D, Laithier F, Fournier J P. Development of powder metallurgy impellers for VINCI hydrogen turbopump [A]. Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C]. Las Vegas: AIAA. 2000. doi:10.2514/6.2000-3861
6 Alliot P, Marchal N, Goirand B. The VINCI hydrogen turbopump development status [A]. Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit [C]. Indianapolis: AIAA, 2013. doi:10.2514/6.2002-4007
7 Bouley S A, Grabowski Jr R C, Rachuk V S, et al. Unified low-risk single-shaft turbopump for cryogenic expander-cycle rocket engines [A]. Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit [C]. Nashville: AIAA, 2010. doi:10.2514/6.2010-7130
8 Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metall. Sin., 2018, 54: 1537
8 徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54: 1537
9 Yin Y J, Zhang P, Zhou J X, et al. Correction on Shima yield criterion for Ti6Al4V powder HIP process [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sc. Ed.), 2018, 46(6): 14
9 殷亚军, 张 朋, 周建新 等. Ti6Al4V合金粉末热等静压Shima屈服准则修正 [J]. 华中科技大学学报(自然科学版), 2018, 46(6): 14
10 Lang L H, Bu G L, Xue Y, et al. Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti-6Al-4V) hot isostatic pressing [J]. J. Plast. Eng., 2011, 18(4): 34
10 郎利辉, 布国亮, 薛 勇 等. 钛合金热等静压模拟本构关键参数确定及工艺优化 [J]. 塑性工程学报, 2011, 18(4): 34
11 Samarov V, Seliverstov D, Froes F H. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing [A]. Titanium Powder Metallurgy: Science, Technology and Applications [C]. Boston: Butterworth-Heinemann, 2015: 313
12 Goirand B, Gallardo J F, Bosson R. Vinci hydrogen turbopump: A new step in safe, faster and cheaper developments [A]. Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C]. Las Vegas: AIAA. 2000, doi:10.2514/6.2000-3156
13 Yoon S H, Choi C H, Kim J. HIP activities for turbopump components of Korea space launch vehicle [A]. Proceedings of the 12th International Conference on Hot Isostatic Pressing (HIP '17) [C]. Millersville: Materials Research Forum LLC, 2019: 79
14 Guo R P, Xu L, Cheng W X, et al. Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy [J]. Acta Metall. Sin., 2016, 52: 842
14 郭瑞鹏, 徐 磊, 程文祥 等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响 [J]. 金属学报, 2016, 52: 842
doi: 10.11900/0412.1961.2016.00018
15 Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin Heidelberg: Springer, 2007: 1
16 Lu Z C, Zhang X H, Ji W, et al. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures [J]. Mater. Sci. Eng., 2021, A818: 141380
17 Billinghurst Jr E E. Tensile properties of cast titanium alloys: Titanium-6Al-4V ELI and titanium-5Al-2.5Sn ELI [R]. Huntsville: National Aeronautics and Space Administration, 1992
18 Lu Z G. Preparation and hot deformation of Ti2AlNb alloy prepared by powder metallurgy [D]. Hefei: University of Science and Technology of China, 2019
18 卢正冠. 粉末冶金Ti2AlNb合金的制备及热变形研究 [D]. 合肥: 中国科学技术大学, 2019
19 Wu J, Xu L, Lu Z G, et al. Preparation and electron beam welding of HIP powder metallurgy Ti-22Al-24Nb-0.5 Mo alloys [J]. Rare Met. Mater. Eng., 2017, 46(S1): 241
19 吴 杰, 徐 磊, 卢正冠 等. 热等静压粉末Ti2AlNb合金的制备及电子束焊 [J]. 稀有金属材料与工程, 2017, 46(S1): 241
20 Chen W X, Xu L, Lei J F, et al. Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder [J]. Chin. J. Nonferrous Met., 2013, 23: 362
20 程文祥, 徐 磊, 雷家峰 等. 粉末粒度偏析对Ti-5Al-2.5Sn ELI粉末合金拉伸性能的影响 [J]. 中国有色金属学报, 2013, 23: 362
21 Liu Q M, Wu J, Chen Y L, et al. Effect of temperature and powder particle size on mechanical properties and microstructure of PM Ti2AlNb alloy prepared via hot isostatic pressing [J]. Chin. J. Mater. Res., 2019, 33: 161
21 刘巧沐, 吴 杰, 陈玉龙 等. 热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响 [J]. 材料研究学报, 2019, 33: 161
doi: 10.11901/1005.3093.2018.509
22 Lu Z G, Wu J, Xu L, et al. Powder size influence on tensile properties and porosity for PM Ti2AlNb alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1329
23 Christian J L, Hurlich A. Mechanical properties of titanium alloys at cryogenic temperatures [A]. Proceedings of 1967 Cryogenic Engineering Conference Stanford University Stanford [C]. California: Springer, 1995. doi:10.1007/978-1-4757-0516-4_35
24 Grinder O. Surface oxidation of steel powder [J]. Steel Res. Int., 2010, 81: 908
25 Xu L, Tian X S, Wu J, et al. Microstructure and mechanical properties of inconel 718 powder alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin., 2023, 59: 693
doi: 10.11900/0412.1961.2021.00586
25 徐 磊, 田晓生, 吴 杰 等. 热等静压成形Inconel 718粉末合金的显微组织和力学性能 [J]. 金属学报, 2023, 59: 693
26 Nayan N, Singh G, Antony Prabhu T, et al. Cryogenic mechanical properties of warm multi-pass caliber-rolled fine-grained titanium alloys: Ti-6Al-4V (normal and ELI grades) and VT14 [J]. Metall. Mater. Trans., 2018, 49A: 128
27 Arul Kumar M, Wroński M, McCabe R J, et al. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study [J]. Acta Mater., 2018, 148: 123
28 Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45: 254
28 黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 254
29 Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
30 Yuan W X, Mei J, Samarov V, et al. Computer modelling and tooling design for near net shaped components using hot isostatic pressing [J]. J. Mater. Process. Technol., 2007, 182: 39
31 Abouaf M, Chenot J L, Raisson G, et al. Finite element simulation of hot isostatic pressing of metal powders [J]. Int. J. Numer. Methods Eng., 1988, 25: 191
32 Van Nguyen C, Bezold A, Broeckmann C. Inclusion of initial powder distribution in FEM modelling of near net shape PM hot isostatic pressed components [J]. Powder Metall., 2014, 57: 295
33 Abdelhafeez A M, Essa K E A. Influences of powder compaction constitutive models on the finite element simulation of hot isostatic pressing [J]. Procedia CIRP, 2016, 55: 188
34 Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction [D]. Providence: Brown University, 1975
35 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
36 Tvergaard V. On localization in ductile materials containing spherical voids [J]. Int. J. Fract., 1982, 18: 237
37 Aravas N. On the numerical integration of a class of pressure-dependent plasticity models [J]. Int. J. Numer. Methods Eng., 1987, 24: 1395
38 Wu J. Preparation and mechanical properties optimization of powder metallurgy Ti-22Al-24Nb-0.5Mo Alloys [D]. Beijing: University of Chinese Academy of Sciences, 2016
38 吴 杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016
39 Arzt E, Ashby M F, Easterling K E. Practical applications of hotisostatic pressing diagrams: Four case studies [J]. Metall. Mater. Trans., 1983, 14A: 211
40 Broeckmann C. Hot isostatic pressing of near net shape components-process fundamentals and future challenges [J]. Powder Metall., 2012, 55: 176
41 Svoboda A, Häggblad H Å, Karlsson L. Simulation of hot isostatic pressing of a powder metal component with an internal core [J]. Comput. Methods Appl. Mech. Eng., 1997, 148: 299
42 Xu L, Guo R P, Chen Z Y, et al. Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys [J]. Chin. J. Mater. Res., 2016, 30: 23
doi: 10.11901/1005.3093.2015.284
42 徐 磊, 郭瑞鹏, 陈志勇 等. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型 [J]. 材料研究学报, 2016, 30: 23
43 Olevsky E, Maximenko A, Van Dyck S, et al. Container influence on shrinkage under hot isostatic pressing—I. Shrinkage anisotropy of a cylindrical specimen [J]. Int. J. Solids Struct., 1998, 35: 2283
[1] 田晓生, 卢正冠, 徐磊, 吴杰, 杨锐. 粉末冶金Inconel 718合金的热等静压成形和原始颗粒边界的消除[J]. 金属学报, 2024, 60(11): 1487-1498.
[2] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[3] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] 赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
[5] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[6] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[7] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[8] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[9] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[10] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[11] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[12] 姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050.
[13] 姚瑶,董建新,姚志浩,张麦仓, 国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律:II. 模型验证及实验分析[J]. 金属学报, 2013, 49(9): 1051-1060.
[14] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[15] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.