|
|
粉末粒度对钛合金闭式叶轮成形的影响 |
尚学文1,2, 崔潇潇2, 徐磊2, 卢正冠2( ) |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effect of Powder Particle Size on Forming Titanium Alloy Shrouded Impeller |
SHANG Xuewen1,2, CUI Xiaoxiao2, XU Lei2, LU Zhengguan2( ) |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
尚学文, 崔潇潇, 徐磊, 卢正冠. 粉末粒度对钛合金闭式叶轮成形的影响[J]. 金属学报, 2025, 61(2): 253-264.
Xuewen SHANG,
Xiaoxiao CUI,
Lei XU,
Zhengguan LU.
Effect of Powder Particle Size on Forming Titanium Alloy Shrouded Impeller[J]. Acta Metall Sin, 2025, 61(2): 253-264.
1 |
Volkov A M, Karyagin D A, Letnikov M N, et al. Specifics of producing disk blanks for gas-turbine engines using granules of super heat-resistant nickel alloys [J]. Metallurgist, 2020, 64: 362
|
2 |
Hashiguchi D H, Heberling J, Campbell J, et al. New decade of shaped beryllium blanks [A]. Proceedings of SPIE 9574, Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems [C]. San Diego: SPIE, 2015: 957403
|
3 |
Sergi A, Khan R H U, Irukuvarghula S, et al. Development of Ni-base metal matrix composites by powder metallurgy hot isostatic pressing for space applications [J]. Adv. Powder Technol., 2022, 33:103411
|
4 |
Qian Z D, Wang H. Russian pд hydrogen-oxygen engine technology [R]. Technical Report on Aerospace, 1995: 12
|
4 |
钱宗德, 王 桁. 俄罗斯pд—0120氢氧发动机技术 [R]. 航天技术报告, 1995: 12
|
5 |
Guichard D, Laithier F, Fournier J P. Development of powder metallurgy impellers for VINCI hydrogen turbopump [A]. Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C]. Las Vegas: AIAA. 2000. doi:10.2514/6.2000-3861
|
6 |
Alliot P, Marchal N, Goirand B. The VINCI hydrogen turbopump development status [A]. Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit [C]. Indianapolis: AIAA, 2013. doi:10.2514/6.2002-4007
|
7 |
Bouley S A, Grabowski Jr R C, Rachuk V S, et al. Unified low-risk single-shaft turbopump for cryogenic expander-cycle rocket engines [A]. Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit [C]. Nashville: AIAA, 2010. doi:10.2514/6.2010-7130
|
8 |
Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metall. Sin., 2018, 54: 1537
|
8 |
徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54: 1537
|
9 |
Yin Y J, Zhang P, Zhou J X, et al. Correction on Shima yield criterion for Ti6Al4V powder HIP process [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sc. Ed.), 2018, 46(6): 14
|
9 |
殷亚军, 张 朋, 周建新 等. Ti6Al4V合金粉末热等静压Shima屈服准则修正 [J]. 华中科技大学学报(自然科学版), 2018, 46(6): 14
|
10 |
Lang L H, Bu G L, Xue Y, et al. Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti-6Al-4V) hot isostatic pressing [J]. J. Plast. Eng., 2011, 18(4): 34
|
10 |
郎利辉, 布国亮, 薛 勇 等. 钛合金热等静压模拟本构关键参数确定及工艺优化 [J]. 塑性工程学报, 2011, 18(4): 34
|
11 |
Samarov V, Seliverstov D, Froes F H. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing [A]. Titanium Powder Metallurgy: Science, Technology and Applications [C]. Boston: Butterworth-Heinemann, 2015: 313
|
12 |
Goirand B, Gallardo J F, Bosson R. Vinci hydrogen turbopump: A new step in safe, faster and cheaper developments [A]. Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C]. Las Vegas: AIAA. 2000, doi:10.2514/6.2000-3156
|
13 |
Yoon S H, Choi C H, Kim J. HIP activities for turbopump components of Korea space launch vehicle [A]. Proceedings of the 12th International Conference on Hot Isostatic Pressing (HIP '17) [C]. Millersville: Materials Research Forum LLC, 2019: 79
|
14 |
Guo R P, Xu L, Cheng W X, et al. Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy [J]. Acta Metall. Sin., 2016, 52: 842
|
14 |
郭瑞鹏, 徐 磊, 程文祥 等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响 [J]. 金属学报, 2016, 52: 842
doi: 10.11900/0412.1961.2016.00018
|
15 |
Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin Heidelberg: Springer, 2007: 1
|
16 |
Lu Z C, Zhang X H, Ji W, et al. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures [J]. Mater. Sci. Eng., 2021, A818: 141380
|
17 |
Billinghurst Jr E E. Tensile properties of cast titanium alloys: Titanium-6Al-4V ELI and titanium-5Al-2.5Sn ELI [R]. Huntsville: National Aeronautics and Space Administration, 1992
|
18 |
Lu Z G. Preparation and hot deformation of Ti2AlNb alloy prepared by powder metallurgy [D]. Hefei: University of Science and Technology of China, 2019
|
18 |
卢正冠. 粉末冶金Ti2AlNb合金的制备及热变形研究 [D]. 合肥: 中国科学技术大学, 2019
|
19 |
Wu J, Xu L, Lu Z G, et al. Preparation and electron beam welding of HIP powder metallurgy Ti-22Al-24Nb-0.5 Mo alloys [J]. Rare Met. Mater. Eng., 2017, 46(S1): 241
|
19 |
吴 杰, 徐 磊, 卢正冠 等. 热等静压粉末Ti2AlNb合金的制备及电子束焊 [J]. 稀有金属材料与工程, 2017, 46(S1): 241
|
20 |
Chen W X, Xu L, Lei J F, et al. Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder [J]. Chin. J. Nonferrous Met., 2013, 23: 362
|
20 |
程文祥, 徐 磊, 雷家峰 等. 粉末粒度偏析对Ti-5Al-2.5Sn ELI粉末合金拉伸性能的影响 [J]. 中国有色金属学报, 2013, 23: 362
|
21 |
Liu Q M, Wu J, Chen Y L, et al. Effect of temperature and powder particle size on mechanical properties and microstructure of PM Ti2AlNb alloy prepared via hot isostatic pressing [J]. Chin. J. Mater. Res., 2019, 33: 161
|
21 |
刘巧沐, 吴 杰, 陈玉龙 等. 热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响 [J]. 材料研究学报, 2019, 33: 161
doi: 10.11901/1005.3093.2018.509
|
22 |
Lu Z G, Wu J, Xu L, et al. Powder size influence on tensile properties and porosity for PM Ti2AlNb alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1329
|
23 |
Christian J L, Hurlich A. Mechanical properties of titanium alloys at cryogenic temperatures [A]. Proceedings of 1967 Cryogenic Engineering Conference Stanford University Stanford [C]. California: Springer, 1995. doi:10.1007/978-1-4757-0516-4_35
|
24 |
Grinder O. Surface oxidation of steel powder [J]. Steel Res. Int., 2010, 81: 908
|
25 |
Xu L, Tian X S, Wu J, et al. Microstructure and mechanical properties of inconel 718 powder alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin., 2023, 59: 693
doi: 10.11900/0412.1961.2021.00586
|
25 |
徐 磊, 田晓生, 吴 杰 等. 热等静压成形Inconel 718粉末合金的显微组织和力学性能 [J]. 金属学报, 2023, 59: 693
|
26 |
Nayan N, Singh G, Antony Prabhu T, et al. Cryogenic mechanical properties of warm multi-pass caliber-rolled fine-grained titanium alloys: Ti-6Al-4V (normal and ELI grades) and VT14 [J]. Metall. Mater. Trans., 2018, 49A: 128
|
27 |
Arul Kumar M, Wroński M, McCabe R J, et al. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study [J]. Acta Mater., 2018, 148: 123
|
28 |
Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45: 254
|
28 |
黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 254
|
29 |
Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
|
30 |
Yuan W X, Mei J, Samarov V, et al. Computer modelling and tooling design for near net shaped components using hot isostatic pressing [J]. J. Mater. Process. Technol., 2007, 182: 39
|
31 |
Abouaf M, Chenot J L, Raisson G, et al. Finite element simulation of hot isostatic pressing of metal powders [J]. Int. J. Numer. Methods Eng., 1988, 25: 191
|
32 |
Van Nguyen C, Bezold A, Broeckmann C. Inclusion of initial powder distribution in FEM modelling of near net shape PM hot isostatic pressed components [J]. Powder Metall., 2014, 57: 295
|
33 |
Abdelhafeez A M, Essa K E A. Influences of powder compaction constitutive models on the finite element simulation of hot isostatic pressing [J]. Procedia CIRP, 2016, 55: 188
|
34 |
Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction [D]. Providence: Brown University, 1975
|
35 |
Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
|
36 |
Tvergaard V. On localization in ductile materials containing spherical voids [J]. Int. J. Fract., 1982, 18: 237
|
37 |
Aravas N. On the numerical integration of a class of pressure-dependent plasticity models [J]. Int. J. Numer. Methods Eng., 1987, 24: 1395
|
38 |
Wu J. Preparation and mechanical properties optimization of powder metallurgy Ti-22Al-24Nb-0.5Mo Alloys [D]. Beijing: University of Chinese Academy of Sciences, 2016
|
38 |
吴 杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016
|
39 |
Arzt E, Ashby M F, Easterling K E. Practical applications of hotisostatic pressing diagrams: Four case studies [J]. Metall. Mater. Trans., 1983, 14A: 211
|
40 |
Broeckmann C. Hot isostatic pressing of near net shape components-process fundamentals and future challenges [J]. Powder Metall., 2012, 55: 176
|
41 |
Svoboda A, Häggblad H Å, Karlsson L. Simulation of hot isostatic pressing of a powder metal component with an internal core [J]. Comput. Methods Appl. Mech. Eng., 1997, 148: 299
|
42 |
Xu L, Guo R P, Chen Z Y, et al. Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys [J]. Chin. J. Mater. Res., 2016, 30: 23
doi: 10.11901/1005.3093.2015.284
|
42 |
徐 磊, 郭瑞鹏, 陈志勇 等. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型 [J]. 材料研究学报, 2016, 30: 23
|
43 |
Olevsky E, Maximenko A, Van Dyck S, et al. Container influence on shrinkage under hot isostatic pressing—I. Shrinkage anisotropy of a cylindrical specimen [J]. Int. J. Solids Struct., 1998, 35: 2283
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|