|
|
形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响 |
王凯冬, 刘允中( ), 詹强坤, 黄斌 |
华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640 |
|
Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting |
WANG Kaidong, LIU Yunzhong( ), ZHAN Qiangkun, HUANG Bin |
National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China |
引用本文:
王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
Kaidong WANG,
Yunzhong LIU,
Qiangkun ZHAN,
Bin HUANG.
Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(10): 1281-1291.
1 |
Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy [J]. Laser Optoelectron. Prog., 2018, 55: 011402
|
1 |
朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状 [J]. 激光与光电子学进展, 2018, 55: 011402
|
2 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
|
3 |
Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review [J]. Adv. Eng. Mater., 2016, 18: 463
doi: 10.1002/adem.201500419
|
4 |
Nie X J, Zhang H, Zhu H H, et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: From single tracks to cubic samples [J]. J. Mater. Process. Technol., 2018, 256: 69
doi: 10.1016/j.jmatprotec.2018.01.030
|
5 |
Gui Q W. The influence of heat treatment process on the precipitates and properties of 2024 aluminum alloy [D]. Changsha: Hunan University, 2012
|
5 |
桂奇文. 热处理工艺对2024铝合金析出相及性能的影响 [D]. 长沙: 湖南大学, 2012
|
6 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
7 |
Casati R, Lemke J N, Alarcon A Z, et al. Aging behavior of high-strength Al alloy 2618 produced by selective laser melting [J]. Metall. Mater. Trans., 2017, 48A: 575
|
8 |
Montero-Sistiaga M L, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting [J]. J. Mater. Process. Technol., 2016, 238: 437
doi: 10.1016/j.jmatprotec.2016.08.003
|
9 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
10 |
Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
|
11 |
Wang P, Gammer C, Brenne F, et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties [J]. Composites, 2018, 147B: 162
|
12 |
Bi J, Lei Z L, Chen Y B, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting [J]. Mater. Sci. Eng., 2019, A768: 138478
|
13 |
Zhang S Y. Effect of nucleating agent on microstructure and mechanical properties of additive manufactured aluminum alloys [D]. Jinan: Shandong University, 2020
|
13 |
张书雅. 形核剂对增材制造铝合金显微组织及力学性能的影响 [D]. 济南: 山东大学, 2020
|
14 |
Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
doi: 10.1016/j.actamat.2020.06.026
|
15 |
Hu L. Effect of nano-TiB2 particles on microstructures and mechanical properties of 2024 aluminum alloy prepared by selective laser melting [D]. Guangzhou: South China University of Technology, 2019
|
15 |
胡 亮. 纳米TiB2颗粒对激光选区熔化成形2024铝合金显微组织与力学性能的影响 [D]. 广州: 华南理工大学, 2019
|
16 |
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloy. Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
|
17 |
Nayak S S, Pabi S K, Murty B S. High strength nanocrystalline L12-Al3(Ti,Zr) intermetallic synthesized by mechanical alloying [J]. Intermetallics, 2007, 15: 26
doi: 10.1016/j.intermet.2006.02.003
|
18 |
Mehta A, Dickson J, Newell R, et al. Interdiffusion and reaction between Al and Zr in the temperature range of 425 to 475oC [J]. J. Phase Equilib. Diffus., 2019, 40: 482
doi: 10.1007/s11669-019-00729-9
|
19 |
Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features [J]. Mater. Sci. Eng., 2006, A428: 148
|
20 |
Zhang B, Li Y T, Bai Q. Defect formation mechanisms in selective laser melting: A review [J]. Chin. J. Mech. Eng., 2017, 30: 515
doi: 10.1007/s10033-017-0121-5
|
21 |
Li D W, Sun T, Yao G C, et al. Preparation of foam aluminum with small pores by melt-based route of ZrH2 [J]. Chin. J. Nonferrous Met., 2010, 20: 143
|
21 |
李大武, 孙 挺, 姚广春 等. 氢化锆熔体发泡法制备小孔径泡沫铝 [J]. 中国有色金属学报, 2010, 20: 143
|
22 |
Dorin T, Ramajayam M, Lamb J, et al. Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys [J]. Mater. Sci. Eng., 2017, A707: 58
|
23 |
Gao Y H, Cao L F, Kuang J, et al. Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al-Cu alloys [J]. J. Alloys Compd., 2020, 822: 153629
doi: 10.1016/j.jallcom.2019.153629
|
24 |
Zhang F R. Numerical simulation and analysis of the molten pool flow characteristics of laser deep penetration welding [D]. Harbin: Harbin Institute of Technology, 2014
|
24 |
张芙蓉. 激光深熔焊过程熔池流动特性数值模拟与分析 [D]. 哈尔滨: 哈尔滨工业大学, 2014
|
25 |
Tradowsky U, White J, Ward R M, et al. Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development [J]. Mater. Des., 2016, 105: 212
doi: 10.1016/j.matdes.2016.05.066
|
26 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
27 |
Tan Q Y, Zhang J Q, Mo N, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles [J]. Addit. Manuf., 2020, 32: 101034
|
28 |
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
|
29 |
Li Y L. Numerical investigation on temperature field and stress field during selective laser melting of AlSi10Mg [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015
|
29 |
李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究 [D]. 南京: 南京航空航天大学, 2015
|
30 |
Li B Q. Selective laser melting of AlSi10Mg: Simulation and experiments [D]. Taiyuan: North University of China, 2019
|
30 |
李保强. 选区激光熔化AlSi10Mg成形过程数值模拟与实验研究 [D]. 太原: 中北大学, 2019
|
31 |
Srinivasan D, Chattopadhyay K. Non-equilibrium transformations involving L12-Al3Zr in ternary Al-X-Zr alloys [J]. Metall. Mater. Trans., 2005, 36A: 311
|
32 |
Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|