Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1281-1291    DOI: 10.11900/0412.1961.2021.00075
  研究论文 本期目录 | 过刊浏览 |
形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响
王凯冬, 刘允中(), 詹强坤, 黄斌
华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640
Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting
WANG Kaidong, LIU Yunzhong(), ZHAN Qiangkun, HUANG Bin
National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
引用本文:

王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
Kaidong WANG, Yunzhong LIU, Qiangkun ZHAN, Bin HUANG. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(10): 1281-1291.

全文: PDF(5343 KB)   HTML
摘要: 

采用选区激光熔化技术制备了含锆Al-Cu-Mg合金,研究了不同方式添加Al3Zr形核剂对试样显微组织和力学性能的影响。结果表明,直接添加Al3Zr和原位生成Al3Zr均能抑制该合金试样的热裂纹,当激光能量密度为370 J/mm3时,试样的平均晶粒尺寸分别由15.69 μm细化至1.88和1.28 μm。原位生成Al3Zr提供的形核剂均为亚稳态Al3Zr立方相(L12-Al3Zr),形核能力高于直接添加Al3Zr获得的Al3Zr颗粒和L12-Al3Zr形核剂。原位生成Al3Zr的Al-Cu-Mg合金综合力学性能更为优异,T6热处理态试样抗拉强度达(485 ± 10) MPa,伸长率比直接添加Al3Zr的合金高出30%。原位生成Al3Zr几乎无需通过高的激光能量密度增强Marangoni对流来实现晶粒细化剂的分散,可使Al-Cu-Mg合金适用于较高速率成形。

关键词 选区激光熔化Al-Cu-Mg合金Al3Zr显微组织力学性能    
Abstract

Selective laser melting (SLM) technology is gaining increasing attention in the field of additive manufacturing. Al-Cu-Mg alloy parts manufactured using SLM technology exhibit significant advantages in lightweight design and the integrated formation of complex structural parts in the aerospace field. However, because of their wide freezing ranges, Al-Cu-Mg alloys have a high cracking tendency at a high cooling rate. SLM technology was used to prepare Zr-modified Al-Cu-Mg alloys in this study. Al3Zr particles were synthesized to directly add to Al-Cu-Mg alloy powders, and ZrH2 particles were chosen to form Al3Zr in-situ during SLM processes. The differences between the effects of adding Al3Zr particles directly and forming Al3Zr in-situ on the microstructures and the mechanical properties of SLMed Al-Cu-Mg alloys were analyzed. The results show that the common hot tearing in as-built Al-Cu-Mg alloys all disappear due to the addition of Al3Zr nucleating agent and the in-situ formed Al3Zr is more conducive to refining grains and improving the plasticity and the processing efficiency of SLMed Al-Cu-Mg alloys. When the laser energy density is 370 J/mm3, the grain size of the samples containing Al3Zr and in-situ formed Al3Zr particles are 1.88 and 1.28 μm, respectively. L12-Al3Zr and undissolved or unmelted Al3Zr particles are the nucleation particles generated by initial Al3Zr particles; whereas, they are all metastable Al3Zr (L12-Al3Zr) synthesized in-situ. L12-Al3Zr has a better nucleation ability than initial Al3Zr particles. The ultimate strength of the heat-treated samples with initial Al3Zr particles or in-situ formed Al3Zr can reach (493 ± 2) or (485 ± 10) MPa, respectively. The elongation of the samples with the in-situ formed Al3Zr is more than 30% higher than that of the samples containing Al3Zr particles. SLMed Al-Cu-Mg alloys with in-situ formed Al3Zr are more suitable for medium-high-speed processes because strong Marangoni flow aroused by high laser energy density is unnecessary for in-situ formed Al3Zr to realize the dispersion of the grain refiner.

Key wordsselective laser melting    Al-Cu-Mg alloy    Al3Zr    microstructure    mechanical property
收稿日期: 2021-02-09     
ZTFLH:  TG146.2  
基金资助:广东省重点领域研发计划项目(2019B090907001);广东省重大科技专项项目(2014B010129002)
作者简介: 王凯冬,男,1995年生,硕士生
图1  原材料的显微组织以及Al3Zr颗粒的XRD谱
图2  Al3Zr/Al-Cu-Mg和ZrH2/Al-Cu-Mg合金复合粉末的显微组织
图3  不同激光能量密度成形的不同成分沉积态Al-Cu-Mg合金的横截面显微组织的OM像
图4  添加与未添加形核剂的沉积态Al-Cu-Mg合金的相对致密度
图5  370 J/mm3激光能量密度成形的不同成分沉积态Al-Cu-Mg合金的纵截面显微组织
图6  370 J/mm3激光能量密度成形的不同成分的沉积态Al-Cu-Mg合金纵截面的反极图和晶粒尺寸分布图
图7  添加与未添加形核剂的沉积态Al-Cu-Mg合金的XRD谱
图8  370 J/mm3激光能量密度成形的直接添加Al3Zr的沉积态Al-Cu-Mg合金TEM像、SAED花样和EDS元素分布图
图9  370 J/mm3激光能量密度成形的含原位生成Al3Zr的沉积态Al-Cu-Mg合金的TEM像及SAED花样
图10  不同激光能量密度成形的不同成分沉积态含锆Al-Cu-Mg合金的SEM背散射像
ElementMass fractionAtomic fraction
Al52.8678.41
Cu2.631.66
Mg0.340.55
Zr44.1719.38
表1  图10c中团聚相的EDS分析结果 (%)
图11  370 J/mm3激光能量密度成形的热处理态含锆Al-Cu-Mg合金的SEM背散射像
图12  采用不同激光能量密度成形的不同成分Al-Cu-Mg合金的沉积态与热处理态试样的力学性能
图13  370 J/mm3激光能量密度成形的含锆Al-Cu-Mg合金沉积态与热处理态试样的断口形貌
图14  沉积态含锆Al-Cu-Mg合金中含锆相演变的示意图
1 Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy [J]. Laser Optoelectron. Prog., 2018, 55: 011402
1 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状 [J]. 激光与光电子学进展, 2018, 55: 011402
2 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
3 Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review [J]. Adv. Eng. Mater., 2016, 18: 463
doi: 10.1002/adem.201500419
4 Nie X J, Zhang H, Zhu H H, et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: From single tracks to cubic samples [J]. J. Mater. Process. Technol., 2018, 256: 69
doi: 10.1016/j.jmatprotec.2018.01.030
5 Gui Q W. The influence of heat treatment process on the precipitates and properties of 2024 aluminum alloy [D]. Changsha: Hunan University, 2012
5 桂奇文. 热处理工艺对2024铝合金析出相及性能的影响 [D]. 长沙: 湖南大学, 2012
6 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
7 Casati R, Lemke J N, Alarcon A Z, et al. Aging behavior of high-strength Al alloy 2618 produced by selective laser melting [J]. Metall. Mater. Trans., 2017, 48A: 575
8 Montero-Sistiaga M L, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting [J]. J. Mater. Process. Technol., 2016, 238: 437
doi: 10.1016/j.jmatprotec.2016.08.003
9 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
10 Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
11 Wang P, Gammer C, Brenne F, et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties [J]. Composites, 2018, 147B: 162
12 Bi J, Lei Z L, Chen Y B, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting [J]. Mater. Sci. Eng., 2019, A768: 138478
13 Zhang S Y. Effect of nucleating agent on microstructure and mechanical properties of additive manufactured aluminum alloys [D]. Jinan: Shandong University, 2020
13 张书雅. 形核剂对增材制造铝合金显微组织及力学性能的影响 [D]. 济南: 山东大学, 2020
14 Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
doi: 10.1016/j.actamat.2020.06.026
15 Hu L. Effect of nano-TiB2 particles on microstructures and mechanical properties of 2024 aluminum alloy prepared by selective laser melting [D]. Guangzhou: South China University of Technology, 2019
15 胡 亮. 纳米TiB2颗粒对激光选区熔化成形2024铝合金显微组织与力学性能的影响 [D]. 广州: 华南理工大学, 2019
16 Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloy. Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
17 Nayak S S, Pabi S K, Murty B S. High strength nanocrystalline L12-Al3(Ti,Zr) intermetallic synthesized by mechanical alloying [J]. Intermetallics, 2007, 15: 26
doi: 10.1016/j.intermet.2006.02.003
18 Mehta A, Dickson J, Newell R, et al. Interdiffusion and reaction between Al and Zr in the temperature range of 425 to 475oC [J]. J. Phase Equilib. Diffus., 2019, 40: 482
doi: 10.1007/s11669-019-00729-9
19 Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features [J]. Mater. Sci. Eng., 2006, A428: 148
20 Zhang B, Li Y T, Bai Q. Defect formation mechanisms in selective laser melting: A review [J]. Chin. J. Mech. Eng., 2017, 30: 515
doi: 10.1007/s10033-017-0121-5
21 Li D W, Sun T, Yao G C, et al. Preparation of foam aluminum with small pores by melt-based route of ZrH2 [J]. Chin. J. Nonferrous Met., 2010, 20: 143
21 李大武, 孙 挺, 姚广春 等. 氢化锆熔体发泡法制备小孔径泡沫铝 [J]. 中国有色金属学报, 2010, 20: 143
22 Dorin T, Ramajayam M, Lamb J, et al. Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys [J]. Mater. Sci. Eng., 2017, A707: 58
23 Gao Y H, Cao L F, Kuang J, et al. Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al-Cu alloys [J]. J. Alloys Compd., 2020, 822: 153629
doi: 10.1016/j.jallcom.2019.153629
24 Zhang F R. Numerical simulation and analysis of the molten pool flow characteristics of laser deep penetration welding [D]. Harbin: Harbin Institute of Technology, 2014
24 张芙蓉. 激光深熔焊过程熔池流动特性数值模拟与分析 [D]. 哈尔滨: 哈尔滨工业大学, 2014
25 Tradowsky U, White J, Ward R M, et al. Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development [J]. Mater. Des., 2016, 105: 212
doi: 10.1016/j.matdes.2016.05.066
26 Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
27 Tan Q Y, Zhang J Q, Mo N, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles [J]. Addit. Manuf., 2020, 32: 101034
28 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
29 Li Y L. Numerical investigation on temperature field and stress field during selective laser melting of AlSi10Mg [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015
29 李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究 [D]. 南京: 南京航空航天大学, 2015
30 Li B Q. Selective laser melting of AlSi10Mg: Simulation and experiments [D]. Taiyuan: North University of China, 2019
30 李保强. 选区激光熔化AlSi10Mg成形过程数值模拟与实验研究 [D]. 太原: 中北大学, 2019
31 Srinivasan D, Chattopadhyay K. Non-equilibrium transformations involving L12-Al3Zr in ternary Al-X-Zr alloys [J]. Metall. Mater. Trans., 2005, 36A: 311
32 Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.