Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 693-702    DOI: 10.11900/0412.1961.2020.00237
  研究论文 本期目录 | 过刊浏览 |
热导型等离子弧焊电弧物理特性和熔池动态行为
李子晗1, 忻建文1, 肖笑2, 王欢3, 华学明1(), 吴东升1
1.上海交通大学 焊接与激光制造研究所 上海 200240
2.河南科技大学 材料科学与工程学院 洛阳 471023
3.沪东中华造船(集团)有限公司 上海 200129
The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding
LI Zihan1, XIN Jianwen1, XIAO Xiao2, WANG Huan3, HUA Xueming1(), WU Dongsheng1
1.Welding and Laser Processing Institute, Shanghai Jiao Tong University, Shanghai 200240, China
2.School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
3.Hudong-Zhonghua Shipbuilding (Group) Co. , Ltd, Shanghai 200129, China
引用本文:

李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
Zihan LI, Jianwen XIN, Xiao XIAO, Huan WANG, Xueming HUA, Dongsheng WU. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. Acta Metall Sin, 2021, 57(5): 693-702.

全文: PDF(7903 KB)   HTML
摘要: 

基于等离子弧和熔池的数值模拟,研究了热导型等离子弧焊的电弧物理特性和熔池动态行为,并使用光谱诊断、熔池红外热成像和示踪粒子检测对数值模拟结果进行了实验验证。结果表明,在热导型等离子弧焊中,等离子体向下冲击熔池表面后,向熔池边缘流动。在熔池内部存在2个相反的涡流,熔池中心的逆时针涡流由电弧压力、Marangoni力和Lorentz力驱动,而熔池尾部的顺时针涡流则由电弧剪切力、Marangoni力和浮力驱动。此外,热导型等离子弧焊中的熔池温度高于小孔型等离子弧焊,这是由热导型等离子弧焊中等离子弧能量密度相对较高,熔池内部对流相对较弱导致的。

关键词 热导型等离子弧焊数值模拟光谱诊断红外热成像示踪粒子检测    
Abstract

Conduction plasma arc welding is widely used to weld thin stainless-steel plates in a liquefied natural gas carrier, in which high arc energy density can be achieved through the constraint effects of the constricting nozzle. However, the welding current is relatively low, such that a keyhole is not formed inside the molten pool in conduction plasma arc welding, causing significantly different arc physical characteristics and molten pool dynamic behaviors from those of keyhole plasma arc welding. In this study, a one-way coupled electrode-arc-molten pool model was developed, and spectral analysis, infrared thermography, and particle tracing methods were used to investigate the arc physical characteristics and molten pool dynamic behaviors in conduction plasma arc welding. In conduction plasma arc welding, numerical and experimental results show that plasma impinges on the surface and flows toward the edge of the molten pool. Two contrary convective eddies were found inside the molten pool. The counterclockwise eddy at the center of the molten pool is driven by arc pressure, Marangoni forces, and Lorentz forces, and the clockwise eddy at the rear part of the molten pool is driven by plasma shear stress, Marangoni forces, and buoyancy forces. Additionally, the maximum temperature of the molten pool in conduction plasma arc welding is higher than that in keyhole plasma arc welding due to higher arc energy density and weaker convection.

Key wordsconduction plasma arc welding    numerical simulation    spectral analysis    infrared thermography    particle tracing
收稿日期: 2020-07-06     
ZTFLH:  TG456.2  
基金资助:工业和信息化部高技术船舶科研计划项目
作者简介: 李子晗,男,1997年生,硕士生
图1  等离子弧-熔池单向耦合数值模拟框架
图2  熔池表面变形前后电弧剪切力方向
ParameterUnitValueParameterUnitValue
Densitykg·m-36900Liquidus temperatureK1727
Viscositykg·m-1·s-15.9 × 10-3Solidus temperatureK1697
Specific heat (liquid state)J·kg-1·K-1720Boiling temperatureK3133
Specific heat (solid state)J·kg-1·K-1760Heat transfer coefficientW·m-2·K-420
Latent heat of fusionJ·kg-12.47 × 105Coefficient of thermal expansionK-11.5 × 10-4
Thermal conductivity (liquid state)W·m-1·K-128.4Surface tensionN·m-11.8
Thermal conductivity (solid state)W·m-1·K-133.2Surface tension gradientN·m-1·K-1-4.3 × 10-4
表1  SUS304不锈钢主要物性参数
图3  等离子弧焊实验装置示意图
图4  等离子弧温度和流速分布
图5  轴线上等离子弧温度和流速分布及母材表面电弧压力和电弧剪切力分布
图6  y0 = 0对称面熔池不同时间下的温度分布、流场分布及三维流速分布
图7  y0 = 0 mm、z0 = 8.3 mm处等离子弧的辐射光谱及等离子弧温度模拟结果与实验结果对比
图8  示踪粒子流动行为(a) t = 4.8 s (b) t = 4.8 s + 1.5 ms (c) t = 4.8 s + 3 ms(d) t = 4.8 s + 4.5 ms (e) t = 4.8 s + 11 ms (f) t = 4.8 s + 15 ms
图9  熔池上表面红外热成像图及熔池表面温度实验结果与模拟结果对比
图10  焊缝熔合线对比
图11  热导型等离子弧焊(PAW)中的动量耦合机制和能量耦合机制示意图
图12  小孔型PAW中的动量耦合机制示意图
1 Liu Z M, Cui S L, Luo Z, et al. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling [J]. J. Manuf. Process., 2016, 23: 315
2 Westhoff R, Szekely J. A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch [J]. J. Appl. Phys., 1991, 70: 3455
3 Yin F L, Hu S S, Zheng Z T, et al. Numerical analysis of arc in plasma arc welding [J]. Trans. China Weld. Inst., 2006, 27(8): 51
3 殷凤良, 胡绳荪, 郑振太等. 等离子弧焊电弧的数值模拟 [J]. 焊接学报, 2006, 27(8): 51
4 Lancaster J F. The physics of welding [J]. Phys. Technol., 1984, 15: 73
5 Wang X J, Wu C S, Chen M A. Numerical simulation of weld pool keyholing process in stationary plasma arc welding [J]. Acta Metall. Sin., 2010, 46: 984
5 王小杰, 武传松, 陈茂爱. 等离子弧定点焊熔池穿孔过程的数值分析 [J]. 金属学报, 2010, 46: 984
6 Xu B, Jiang F, Chen S J, et al. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole [J]. Chin. Phys., 2018, 27B: 034701
7 Wu D S, Tashiro S, Hua X M, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model [J]. Int. J. Heat Mass Transf., 2019, 141: 604
8 Metcalfe J C, Quigley M B C. Heat transfer in plasma-arc welding [J]. Weld. J., 1975, 54: S99
9 Evans D M, Huang D, McClure J C, et al. Arc efficiency of plasma arc welding [J]. Weld. J., 1998, 77: 53S
10 Tanaka M, Lowke J J. Predictions of weld pool profiles using plasma physics [J]. J. Phys, 2007, 40D: R1
11 Arul S, Sellamuthu R. Application of a simplified simulation method to the determination of arc efficiency of gas tungsten arc welding (GTAW) and experimental validation [J]. Int. J. Comput. Mater. Sci. Surf. Eng., 2011, 4: 265
12 Van A N, Tashiro S, Van H B, et al. Experimental investigation on the weld pool formation process in plasma keyhole arc welding [J]. J. Phys., 2018, 51D: 015204
13 Feng C, Qin G L, Meng X M, et al. Defect evolution of 409L stainless steel in high-speed TIG welding [J]. Mater. Manuf. Process., 2020, 35: 179
14 Van A N, Tashiro S, Tanaka M. Undercut formation mechanism in keyhole plasma arc welding [J]. Weld. J., 2019, 98: 202
15 Wu C S, Meng X M, Chen J, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding [J]. J. Mech. Eng., 2018, 54(2): 1
15 武传松, 孟祥萌, 陈 姬等. 熔焊热过程与熔池行为数值模拟的研究进展 [J]. 机械工程学报, 2018, 54(2): 1
16 Wu C S, Wang L, Ren W J, et al. Plasma arc welding: Process, sensing, control and modeling [J]. J. Manuf. Process., 2014, 16: 74
17 Song Y L, Li J Y. Thermo-equilibrium in welding arc plasma [J]. Trans. China Weld. Inst., 1994, 15: 138
17 宋永伦, 李俊岳. 焊接电弧等离子体的平衡性质 [J]. 焊接学报, 1994, 15: 138
18 Wang A Y, He J P, Wang X X, et al. Distribution characteristics and parameters effects of MPLW arc [J]. Trans. China. Weld. Inst., 2017, 38(8): 77
18 王昂洋, 何建萍, 王晓霞等. 微束等离子弧焊电弧温度场的分布特征及参数影响 [J]. 焊接学报, 2017, 38(8): 77
19 Zhang J N, He J P, Wang X X, et al. Multi-field coupling of arc in micro-plasma arc welding [J]. Trans. China. Weld. Inst., 2018, 39(6): 13
19 张济楠, 何建萍, 王晓霞等. 微束等离子弧焊电弧多物理场耦合 [J]. 焊接学报, 2018, 39(6): 13
20 Sakai P R, Lima M S F, Fanton L, et al. Comparison of mechanical and microstructural characteristics in maraging 300 steel welded by three different processes: LASER, PLASMA and TIG [J]. Proc. Eng., 2015, 114: 291
21 Jian X X, Wu C S, Zhang G K, et al. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding [J]. J. Phys., 2015, 48D: 465504
22 Pan J J, Hu S S, Yang L J, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten-plasma-anode model [J]. Acta Mater., 2016, 118: 221
23 Li Y, Wang L, Wu C S. Simulation of keyhole plasma arc welding with electro-magneto-thermo-hydrodynamic interactions [J]. Int. J. Adv. Manuf. Technol., 2019, 101: 2497
24 Xin J W, Wu D S, Li F, et al. Influence mechanisms of keyhole on the arc characteristics in plasma arc welding [J]. J. Mech. Eng., 2020, 56(20): 82
24 忻建文, 吴东升, 李 芳等. 等离子弧焊匙孔对电弧物理特性影响规律的研究 [J]. 机械工程学报, 2020, 56(20): 82
25 Wu D S, Hua X M, Ye D J, et al. Understanding of humping formation and suppression mechanisms using the numerical simulation [J]. Int. J. Heat Mass Transf., 2017, 104: 634
26 Li T Q, Wu C S, Chen J. Transient variation of arc heat flux and pressure distribution on keyhole wall in PAW [J]. Weld. World, 2016, 60: 363
27 Wu D S, Van A N, Tashiro S, et al. Elucidation of the weld pool convection and keyhole formation mechanism in the keyhole plasma arc welding [J]. Int. J. Heat Mass Transf., 2019, 131: 920
28 Huang Y, Li F, Zhang Y L, et al. Spectral analysis of the dynamic behavior of a welding arc during pulsed gas metal arc welding of AA5083 aluminum alloy with ER5183 wire [J]. IEEE Trans. Plasma Sci., 2019, 47: 5078
29 Poueyo-Verwaerde A, Dabezies B, Fabbro R. Thermal coupling inside the keyhole during welding process [A]. Proceedings SPIE 2207, Laser Materials Processing: Industrial and Microelectronics Applications [C]. Vienna, Austria: SPIE, 1994: 176
30 Mao Z W, Zhong Q F, Zhou S L, et al. Numerical analysis of influence of nozzle diameter on plasma arc welding [J]. Hot Work. Technol., 2016, 45: 200
30 毛志伟, 钟庆飞, 周少玲等. 喷嘴孔径对等离子弧焊影响的数值分析 [J]. 热加工工艺, 2016, 45: 200
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[8] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[9] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[10] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[11] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[13] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.