|
|
UO2烧结过程的相场模拟 |
孙正阳1,2, 杨超3, 柳文波1,2( ) |
1 西安交通大学核科学与技术学院 西安 710049 2 西安交通大学陕西省先进核能工程研究中心陕西省先进核能技术重点实验室 西安 710049 3 北京理工大学前沿交叉科学研究院 北京 100081 |
|
Phase Field Simulations of the Sintering Process of UO2 |
SUN Zhengyang1,2, YANG Chao3, LIU Wenbo1,2( ) |
1 School of Nuclear Science and Technology, Xi‘an Jiaotong University, Xi'an 710049,China 2 Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi’an Jiaotong University, Xi’an 710049, China 3 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
引用本文:
孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
Zhengyang SUN,
Chao YANG,
Wenbo LIU.
Phase Field Simulations of the Sintering Process of UO2[J]. Acta Metall Sin, 2020, 56(9): 1295-1303.
[1] |
Yin B Y. Ceramic Nuclear Fuel Process [M]. Harbin: Harbin Engineering University Press, 2016: 277
|
[1] |
(尹邦跃.陶瓷核燃料工艺 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 277)
|
[2] |
Zhou M S, Tian M B, Dai X J. Nuclear Materials and Application [M]. Beijing: Tsinghua University Press, 2017: 22
|
[2] |
(周明胜, 田民波, 戴兴建. 核材料与应用 [M]. 北京: 清华大学出版社, 2017: 22)
|
[3] |
Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 446
|
[4] |
German R M. Sintering Theory and Practice [M]. New York: John Wiley&Sons Ltd., 1996: 1
|
[5] |
Burke J E, Turnbull D. Recrystallization and grain growth [J]. Prog. Metall. Phys., 1952, 3: 220
|
[6] |
Mullins W W. Two-dimension motion of idealized grain boundaries [J]. J. Appl. Phys., 1956, 27: 900
doi: 10.1063/1.1722511
|
[7] |
Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metall., 1965, 13: 227
doi: 10.1016/0001-6160(65)90200-2
|
[8] |
Srolovitz D J, Anderson M P, Grest G S, et al. Computer-simulation of grain-growth—Ⅲ. Influence of a particle dispersion [J]. Acta Metall., 1984, 32: 1429
doi: 10.1016/0001-6160(84)90089-0
|
[9] |
Tikare V, Braginsky M, Olevsky E A. Numerical simulation of solid-state sintering: I, Sintering of three particles [J]. J. Am. Ceram. Soc., 2003, 86: 49
doi: 10.1111/jace.2003.86.issue-1
|
[10] |
Liu Y, Baudin T, Penelle R. Simulation of normal grain growth by cellular automata [J]. Scr. Mater., 1996, 34: 1679
doi: 10.1016/1359-6462(96)00055-3
|
[11] |
Svoboda J, Riedel H. Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion [J]. Acta Metall. Mater., 1995, 43: 499
doi: 10.1016/0956-7151(94)00249-H
|
[12] |
Zhang W, Schneibel J H. The sintering of two particles by surface and grain boundary diffusion—A two-dimensional numerical study [J]. Acta Metall. Mater., 1995, 43: 4377
doi: 10.1016/0956-7151(95)00115-C
|
[13] |
Pan J, Cocks A C F. A numerical technique for the analysis of coupled surface and grain-boundary diffusion [J]. Acta Metall. Mater., 1995, 43: 1395
doi: 10.1016/0956-7151(94)00365-O
|
[14] |
Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline system [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 065003
doi: 10.1088/1361-651X/aacb94
|
[15] |
Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
|
[16] |
Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta. Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
|
[17] |
Chockalingam K, Kouznetsova V G, van der Sluis O, et al. 2D phase field modeling of sintering of silver nanoparticles [J]. Comput. Method Appl. Mech. Eng., 2016, 312: 492
doi: 10.1016/j.cma.2016.07.002
|
[18] |
Wakai F, Brakke K A. Mechanics of sintering for coupled grain boundary and surface diffusion [J]. Acta Mater., 2011, 59: 5379
doi: 10.1016/j.actamat.2011.05.006
|
[19] |
Biswas S, Schwen D, Tomar V. Implementation of a phase field model for simulating evolution of two powder particles representing microstructural changes during sintering [J]. J. Mater. Sci., 2018, 53: 5799
doi: 10.1007/s10853-017-1846-3
|
[20] |
Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28: 258
doi: 10.1063/1.1744102
|
[21] |
Jing X N, Ni Y, He L H, et al. 2-D phase-field simulation of pore evolution in sintering ceramics [J]. J. Inorg. Mater., 2002, 17: 1078
|
[21] |
(景晓宁, 倪 勇, 何陵辉等. 陶瓷烧结过程孔隙演化的二维相场模拟 [J]. 无机材料学报, 2002, 17: 1078)
|
[22] |
Liu M Z, Zhang R J, Fang W, et al. Phase field simulation of sintering process in biphasic porous material [J]. Acta. Metall. Sin., 2012, 48: 1207
doi: 10.3724/SP.J.1037.2012.00353
|
[22] |
(刘明治, 张瑞杰, 方 伟等. 相场法模拟两相多孔组织烧结 [J]. 金属学报, 2012, 48: 1207)
doi: 10.3724/SP.J.1037.2012.00353
|
[23] |
Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
|
[24] |
Kumar V, Fang Z Z, Fife P C. Phase field simulations of grain growth during sintering of two unequal-sized particles [J]. Mater. Sci. Eng., 2010, A528: 254
|
[25] |
Gugenberger C, Spatschek R, Kassner K. Comparison of phase-field models for surface diffusion [J]. Phys. Rev., 2008, 78E: 016703
|
[26] |
Moelans N, Blanpain B, Wollants P. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems [J]. Phys. Rev., 2008, 78B: 024113
|
[27] |
Deng J. A phase field model of sintering with direction-dependent diffusion [J]. Mater. Trans., 2012, 53: 385
|
[28] |
Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
|
[29] |
Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 065005
|
[30] |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
|
[31] |
Bourgeois L, Dehaudt P, Lemaignan C, et al. Pore migration in UO2 and grain growth kinetics [J]. J. Nucl. Mater., 2001, 295: 73
|
[32] |
Reynolds G L, Burton B. Grain-boundary diffusion in uranium dioxide: The correlation between sintering and creep and a reinterpretation of creep mechanism [J]. J. Nucl. Mater., 1979, 82: 22
doi: 10.1016/0022-3115(79)90035-7
|
[33] |
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
doi: 10.1016/0001-6160(79)90196-2
|
[34] |
Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
|
[35] |
Ge L H, Subhash G, Baney R H, et al. Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering [J]. J. Eur. Ceram. Soc., 2014, 34: 1791
doi: 10.1016/j.jeurceramsoc.2014.01.018
|
[36] |
Ahmed K, Allen T, El-Azab A. Phase field modeling for grain growth in porous solids [J]. J. Mater. Sci., 2016, 51: 1261
|
[37] |
Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
|
[38] |
Smith C S. Grains, phases, and interfaces: An interpretation of microstructure [J]. Trans. Met. Soc. AIME., 1948, 175: 15
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|