Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1295-1303    DOI: 10.11900/0412.1961.2019.00440
  本期目录 | 过刊浏览 |
UO2烧结过程的相场模拟
孙正阳1,2, 杨超3, 柳文波1,2()
1 西安交通大学核科学与技术学院 西安 710049
2 西安交通大学陕西省先进核能工程研究中心陕西省先进核能技术重点实验室 西安 710049
3 北京理工大学前沿交叉科学研究院 北京 100081
Phase Field Simulations of the Sintering Process of UO2
SUN Zhengyang1,2, YANG Chao3, LIU Wenbo1,2()
1 School of Nuclear Science and Technology, Xi‘an Jiaotong University, Xi'an 710049,China
2 Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi’an Jiaotong University, Xi’an 710049, China
3 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
引用本文:

孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
Zhengyang SUN, Chao YANG, Wenbo LIU. Phase Field Simulations of the Sintering Process of UO2[J]. Acta Metall Sin, 2020, 56(9): 1295-1303.

全文: PDF(1638 KB)   HTML
摘要: 

利用相场模型对UO2陶瓷粉末的烧结过程进行了模拟。在修正的相场模型中,不仅考虑了表面扩散、晶界扩散和晶格扩散3种各向异性的扩散机制对烧结组织形貌和烧结动力学的影响,而且考虑了不同陶瓷颗粒之间的界面能对烧结形貌的影响。基于实验条件和热力学物性参数,对UO2陶瓷粉末在2000 K的烧结过程进行了模拟。模拟结果显示:初始形貌为圆形的陶瓷粉末有利于烧结过程的进行;烧结过程中存在大晶粒吞噬小晶粒的现象;晶界扩散机制是UO2烧结过程中的主导机制;晶界能的改变导致晶界与相界之间的平衡二面角发生改变。在此基础上,模拟了多晶UO2陶瓷粉末的烧结过程,模拟结果与实验结果吻合较好。

关键词 相场模型UO2烧结扩散机制    
Abstract

UO2 is widely used as fuel in various nuclear reactors, and the sintering of UO2 ceramic powder under high temperature is one of the most important processes during the preparation of UO2 fuel. However, sintering is a very complicated process which is controlled by many simultaneous mechanisms. The phase field method was used to simulate the sintering process of UO2 ceramic powder in the present work. In the modified phase field model, the influence of three anisotropic diffusion mechanisms, including surface diffusion, grain boundary diffusion and lattice diffusion, on the microstructure evolution during sintering was considered, and the effect of the interface energy between different ceramic particles on the sintering morphology was also considered. Based on the experimental conditions and thermodynamic parameters, the sintering process of UO2 ceramic powder at 2000 K was simulated. The simulation results showed that the initial morphology of the ceramic powder affects the sintering kinetics; large grains grow more easily, and small grains disappear at the last stage of sintering; the GB diffusion mechanism is the dominant mechanism during the sintering; the equilibrium dihedral angle between GB and phase boundaries can be strongly affected by the GB energy. In addition, the sintering process of the polycrystalline UO2 ceramic powder was also simulated, and the simulation results were in good agreement with the experimental results.

Key wordsphase field model    UO2    sintering    diffusion mechanism
收稿日期: 2019-12-19     
ZTFLH:  TG148  
基金资助:国家自然科学基金青年项目(11705137);中国博士后科学基金项目(2019M663738);中国博士后科学基金项目(2018T111053);清华大学新型陶瓷与精细工艺国家重点实验室项目(KF201713);中国核工业集团有限公司领创科研项目
作者简介: 孙正阳,男,1998年生,本科生
图1  相场模型示意图Color online
Physical parameterValueRef.
Ds8.8258×10-11 m2·s-1[31]
Dgb7.8998×10-13 m2·s-1[32]
Dl7.8998×10-15 m2·s-1[34]
γs0.6 J·m-2[34]
γgb0.3 J·m-2[34]
δ6 nm[34]
表1  UO2的物理参数[31,32,34]
ParameterValueParameterValue
?A17?Mgb67.5
?B7?Ml0.675
?κη6.75?L1
?κρ20.25Δx=Δy1
?Ms7541Δt2×10-5
表2  模拟中的无量纲参数表
图2  2个等尺寸圆形晶粒演化的相场模拟(a) 2×104 step;(b) 10×104 step;(c) 180×104 step;(d) 250×104 step
图3  2个等尺寸的六边形晶粒演化的相场模拟(a) 2×104 step;(b) 10×104 step;(c) 180×104 step;(d) 250×104 step
图4  不同形状晶粒的烧结颈的对数增长曲线
图5  烧结颈增长的拟合曲线
图6  2个不等大圆形晶粒演化的相场模拟(a) 2×104 step;(b) 10×104 step;(c) 180×104 step;(d) 250×104 step
图7  较大晶粒面积与烧结颈的演化曲线
图8  不同扩散机制下双晶粒演化的相场模拟(a1, b1) 10×104 step;(a2, b2) 20×104 step;(a3, b3) 50×104 step
图9  不同晶界能下的平衡二面角(a) γgb/γs=1.4,?Φ=90°;(b) γgb/γs=1,?Φ=120°;(c) γgb/γs=0.5,?Φ=150°
图10  多晶演化的相场模拟(a) 0;(b) 2×104 step;(c) 10×104 step;(d) 50×104 step;(e) 100×104 step
图11  图10中A晶粒面积增长曲线
[1] Yin B Y. Ceramic Nuclear Fuel Process [M]. Harbin: Harbin Engineering University Press, 2016: 277
[1] (尹邦跃.陶瓷核燃料工艺 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 277)
[2] Zhou M S, Tian M B, Dai X J. Nuclear Materials and Application [M]. Beijing: Tsinghua University Press, 2017: 22
[2] (周明胜, 田民波, 戴兴建. 核材料与应用 [M]. 北京: 清华大学出版社, 2017: 22)
[3] Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 446
[4] German R M. Sintering Theory and Practice [M]. New York: John Wiley&Sons Ltd., 1996: 1
[5] Burke J E, Turnbull D. Recrystallization and grain growth [J]. Prog. Metall. Phys., 1952, 3: 220
[6] Mullins W W. Two-dimension motion of idealized grain boundaries [J]. J. Appl. Phys., 1956, 27: 900
doi: 10.1063/1.1722511
[7] Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metall., 1965, 13: 227
doi: 10.1016/0001-6160(65)90200-2
[8] Srolovitz D J, Anderson M P, Grest G S, et al. Computer-simulation of grain-growth—Ⅲ. Influence of a particle dispersion [J]. Acta Metall., 1984, 32: 1429
doi: 10.1016/0001-6160(84)90089-0
[9] Tikare V, Braginsky M, Olevsky E A. Numerical simulation of solid-state sintering: I, Sintering of three particles [J]. J. Am. Ceram. Soc., 2003, 86: 49
doi: 10.1111/jace.2003.86.issue-1
[10] Liu Y, Baudin T, Penelle R. Simulation of normal grain growth by cellular automata [J]. Scr. Mater., 1996, 34: 1679
doi: 10.1016/1359-6462(96)00055-3
[11] Svoboda J, Riedel H. Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion [J]. Acta Metall. Mater., 1995, 43: 499
doi: 10.1016/0956-7151(94)00249-H
[12] Zhang W, Schneibel J H. The sintering of two particles by surface and grain boundary diffusion—A two-dimensional numerical study [J]. Acta Metall. Mater., 1995, 43: 4377
doi: 10.1016/0956-7151(95)00115-C
[13] Pan J, Cocks A C F. A numerical technique for the analysis of coupled surface and grain-boundary diffusion [J]. Acta Metall. Mater., 1995, 43: 1395
doi: 10.1016/0956-7151(94)00365-O
[14] Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline system [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 065003
doi: 10.1088/1361-651X/aacb94
[15] Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
[16] Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta. Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
[17] Chockalingam K, Kouznetsova V G, van der Sluis O, et al. 2D phase field modeling of sintering of silver nanoparticles [J]. Comput. Method Appl. Mech. Eng., 2016, 312: 492
doi: 10.1016/j.cma.2016.07.002
[18] Wakai F, Brakke K A. Mechanics of sintering for coupled grain boundary and surface diffusion [J]. Acta Mater., 2011, 59: 5379
doi: 10.1016/j.actamat.2011.05.006
[19] Biswas S, Schwen D, Tomar V. Implementation of a phase field model for simulating evolution of two powder particles representing microstructural changes during sintering [J]. J. Mater. Sci., 2018, 53: 5799
doi: 10.1007/s10853-017-1846-3
[20] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28: 258
doi: 10.1063/1.1744102
[21] Jing X N, Ni Y, He L H, et al. 2-D phase-field simulation of pore evolution in sintering ceramics [J]. J. Inorg. Mater., 2002, 17: 1078
[21] (景晓宁, 倪 勇, 何陵辉等. 陶瓷烧结过程孔隙演化的二维相场模拟 [J]. 无机材料学报, 2002, 17: 1078)
[22] Liu M Z, Zhang R J, Fang W, et al. Phase field simulation of sintering process in biphasic porous material [J]. Acta. Metall. Sin., 2012, 48: 1207
doi: 10.3724/SP.J.1037.2012.00353
[22] (刘明治, 张瑞杰, 方 伟等. 相场法模拟两相多孔组织烧结 [J]. 金属学报, 2012, 48: 1207)
doi: 10.3724/SP.J.1037.2012.00353
[23] Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
[24] Kumar V, Fang Z Z, Fife P C. Phase field simulations of grain growth during sintering of two unequal-sized particles [J]. Mater. Sci. Eng., 2010, A528: 254
[25] Gugenberger C, Spatschek R, Kassner K. Comparison of phase-field models for surface diffusion [J]. Phys. Rev., 2008, 78E: 016703
[26] Moelans N, Blanpain B, Wollants P. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems [J]. Phys. Rev., 2008, 78B: 024113
[27] Deng J. A phase field model of sintering with direction-dependent diffusion [J]. Mater. Trans., 2012, 53: 385
[28] Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
[29] Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 065005
[30] Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
[31] Bourgeois L, Dehaudt P, Lemaignan C, et al. Pore migration in UO2 and grain growth kinetics [J]. J. Nucl. Mater., 2001, 295: 73
[32] Reynolds G L, Burton B. Grain-boundary diffusion in uranium dioxide: The correlation between sintering and creep and a reinterpretation of creep mechanism [J]. J. Nucl. Mater., 1979, 82: 22
doi: 10.1016/0022-3115(79)90035-7
[33] Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
doi: 10.1016/0001-6160(79)90196-2
[34] Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
[35] Ge L H, Subhash G, Baney R H, et al. Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering [J]. J. Eur. Ceram. Soc., 2014, 34: 1791
doi: 10.1016/j.jeurceramsoc.2014.01.018
[36] Ahmed K, Allen T, El-Azab A. Phase field modeling for grain growth in porous solids [J]. J. Mater. Sci., 2016, 51: 1261
[37] Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
[38] Smith C S. Grains, phases, and interfaces: An interpretation of microstructure [J]. Trans. Met. Soc. AIME., 1948, 175: 15
[1] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 皮慧龙, 石小磊, 徐兴祥. SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响[J]. 金属学报, 2021, 57(6): 791-796.
[5] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[6] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[7] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[8] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[9] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[10] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[11] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[12] 游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
[13] 江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*[J]. 金属学报, 2016, 52(1): 105-112.
[14] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
[15] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.