Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 979-987    DOI: 10.11900/0412.1961.2019.00388
  本期目录 | 过刊浏览 |
Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能
刘先锋1,2, 刘冬1(), 刘仁慈1, 崔玉友1, 杨锐1
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion
LIU Xianfeng1,2, LIU Dong1(), LIU Renci1, CUI Yuyou1, YANG Rui1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. College of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
Xianfeng LIU, Dong LIU, Renci LIU, Yuyou CUI, Rui YANG. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. Acta Metall Sin, 2020, 56(7): 979-987.

全文: PDF(5319 KB)   HTML
摘要: 

采用包套近等温热挤压工艺制备了Ti-43.5Al-4Nb-1Mo-0.1B合金方形棒材,通过OM、SEM、XRD、TEM和拉伸等实验方法研究了方棒不同状态和位置的组织及拉伸性能。结果表明,方棒材的挤压态组织较为均匀,不同位置的微观组织无明显差异;挤压变形使铸锭组织片层取向趋于一致,趋向平行于挤压方向;晶界处γ相存在颗粒状、块状和长条状3种形态;β相在挤压过程中碎化和被拉长呈平行挤压方向纤维状。在TEM下观察,棒材边部位置片层完全碎化,而心部位置片层断裂后呈长条状。β0相中生成大量ω0相,两者位相关系遵循:[111ˉ]β0//[0001]ω0、{110}β0//{21ˉ1ˉ0}ω0。方棒材的室温拉伸强度达到1000 MPa以上,室温延伸率为0.5%左右;800 ℃拉伸屈服强度达到400 MPa以上,表现明显塑性。热挤压合金经时效热处理后在β0相中生成大量透镜状γ相,时效处理提高了合金的高温拉伸性能,但无法消除ω0相。

关键词 β凝固γ-TiAl合金包套热挤压变形组织拉伸性能    
Abstract

β solidifying γ-TiAl alloys are being considered for high-temperature application in the aerospace and automotive industries as high efficiency materials which can withstand temperatures up to 800 ℃ and owns attractively thermal and mechanical properties. Through thermos-mechanical process can obtain excellent alloy properties, such as high strength and better elongation. But it will cause anisotropy. Ti-43.5Al-4Nb-1Mo-0.1B alloy rectangular bar was prepared by isothermal hot canned extrusion process. The OM, SEM, XRD, TEM and tensile methods were used to study the microstructure and tensile properties of the rectangular rods in different states and locations. The results show that the extruded structure of the rectangular rods is relatively uniform and there is no significant difference in the microstructure at different locations. The extrusion deformation makes the orientation of the lamellar uniform, tending to be parallel to the extrusion direction; γ phase in the grain boundary exists in the three forms of graininess, bulk and strip; the β phase is shredded during extrusion and is elongated in a parallel extrusion direction. Under the TEM observation, lamellar at the edge of the bar was completely shredded, and lamellar at the core position was elongated after lamellar was broken. A large number of ω0 phases are generated in the β0 phase, and the phase relationship of the two follows: [111ˉ]β0//[0001]ω0, {110}β0//{21ˉ1ˉ0}ω0. The tensile strength reaches 1000 MPa or more and elongations are about 0.5% of the rectangular bar at room temperature; the yield strength is above 400 MPa at 800 ℃, which exhibits remarkable plasticity. After the ageing treatment of the hot extruded alloy, a large amount of lens-shape γ phase is formed in the β0 phase, and the ageing treatment improves the high temperature tensile properties of the alloy, but the ω0 phase can not be eliminated.

Key wordsβ solidifying    γ-TiAl alloy    hot canned extrusion    deformation microstructure    tensile property
收稿日期: 2019-11-13     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51701209)
作者简介: 刘先锋,男,1995年生,硕士生
Cast ingotTiAlNbMoBFeSiCNHO
NominalBal.43.54.001.000.100------
ActualBal.43.23.941.030.076≤0.051≤0.15≤0.00680.020.0570.013
表1  Ti-43.5Al-4Nb-1Mo-0.1B (TNM)合金铸锭的化学成分 (atomic fraction / %)
图1  TNM合金铸锭组织的BSE-SEM像及对应的XRD谱
ConditionMicrostructure(α2+γ) colonyLamellarKinkingβ phaseγ phase
typeorientationlamellarvolumeform
LengthWidthRatio
(°)fraction / %
μmμm
As-castNear lamellar82.3352.901.610~180No0.58Graininess
As-extrusion,Near lamellar177.8941.084.260~30, mainYes14.46Graininess,
edgebulk, strip
As-extrusion,Near lamellar204.1350.674.030~30, mainYes15.43Graininess,
centerbulk, strip
Ageing,Near lamellar178.3240.784.370~30, mainYes<10.83Graininess, bulk,
edgestrip, lens-shape
Ageing,Near lamellar210.5651.464.090~30, mainYes<8.83Graininess, bulk,
centerstrip, lens-shape
表2  不同状态下TNM合金微观组织特征
图2  挤压态与时效态TNM合金不同位置的微观组织BSE-SEM像
图3  挤压态TNM合金晶界处γ相形态及SAED谱
图4  TEM暗场像下ω0相及β0相形貌及其对应的SAED谱
图5  挤压态合金纵切面低倍腐蚀形貌图
图6  挤压态TNM合金不同位置的TEM像
图7  时效热处理后β0相中析出γ相的TEM像及其对应的SAED谱
图8  不同状态下γ-TiAl合金室温拉伸性能及TNM合金室温拉伸应力-应变曲线
图9  不同位置时效态TNM合金室温拉伸断口形貌及BSE-SEM像
图10  不同状态下γ-TiAl合金高温拉伸性能及TNM合金高温拉伸应力-应变曲线
图11  边部位置时效态试样800 ℃拉伸断口形貌
[1] Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
[1] (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129)
[2] Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: successes, dilemmas, and future [J]. JOM, 2018, 70: 553
[3] Bewlay B P, Weimer M, Kelly T, et al. Intermetallic-based alloys science, technology, and applications [A]. Materials Research Society Symposia Proceedings [C]. Cambrige: Cambridge University Press, 2013: 49
[4] Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
[5] Habel U, Heutling F, Helm D, et al. Forged intermetallic γ-TiAl based alloy low pressure turbine blade in the geared turbofan [A]. Proceeding of the 13th World Conference on Titanium [C]. Warrendale: TMS, 2016: 1223
[6] Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides [J]. Prog. Mater. Sci., 2016, 81: 55
[7] Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123
[8] Djanarthany S, Viala J C, Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl [J]. Mater. Chem. Phys., 2001, 72: 301
[9] Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim, Germany: Wiley, 2011: 1
[10] Kim Y W. Ordered intermetallic alloys, part III: Gamma titanium aluminides [J]. JOM, 1994, 46(7): 30
[11] Huang S C, Chesnutt J C. Structural Applications of Intermetallic Compounds [M]. Chapter 4, New York: Wiley, 2000: 1
[12] Semiatin S L, Chesnutt J C, Austin C, et al. Structural Intermetallics [M]. Warrendale: TMS, 1997: 263
[13] Xie J X, Liu J A. Metal Extrusion: Fundamental and Technology [M]. Beijing: Metallurgical Industry Press, 2002: 8
[13] (谢建新, 刘建安. 金属挤压理论与技术 [M]. 北京: 冶金工业出版社, 2002: 8)
[14] Liu D. Hot extrusion process, microstructure control and mechanical properties of γ-TiAl alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2007
[14] (刘 冬. γ-TiAl热挤压成型工艺、组织控制及性能研究 [D]. 沈阳: 中国科学院金属研究所, 2007)
[15] Liu R C. Microstructure evolution and mechanical properties of Ti-47Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013
[15] (刘仁慈. Ti-47Al-2Cr-2Nb-0.15B合金挤压变形组织演变及其力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[16] Naka S. Structural Intermetallics [M]. Warrendale, PA: TMS, 1997: 313
[17] Kustner V, Oehring M, al AChatterjeeet. Gamma titanium aluminides 2003 [M]. Warrendale, PA: TMS, 2003: 89
[18] Imayev R M, Imayev V M, Khismatullin T G, et al. New approaches to designing alloys based on γ-TiAl+α2-Ti3Al phases [J]. Phys. Met. Metall., 2006, 102: 105
[19] Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAl alloy for blades and structural components [J]. Scr. Mater., 2002, 47: 399
[20] Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by means of hot forging and machining [J]. Intermetallics, 2005, 13: 971
[21] Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy [J]. Intermetallics, 2008, 16: 828
[22] Clemens H, Boeck B, Wallgram W, et al. Experimental studies and hermodynamic simulations of phase transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B alloys [A]. Materials Research Society Symposia Proceedings [C]. Warrendale, PA: MRS, 2009: 115
[23] Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy [J]. Intermetallics, 2014, 44: 128
[24] Lin B C. Study on effect of surface condition and casting defects on mechanical properties of TiAl [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2018
[24] (林博超. 表面状态和铸造缺陷对TiAl力学性能影响研究 [D]. 沈阳: 中国科学院金属研究所, 2018)
[25] Wang X, Liu R C, Cao R X, et al. Effect of cooling rate on boride and room temperature tensile properties of β-solidifying γ-TiAl alloys [J]. Acta Metall. Sin., 2019, 56: 203
[25] (王 希, 刘仁慈, 曹如心等. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响 [J]. 金属学报, 2019, 56: 203)
[26] Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
[26] (刘仁慈, 王 震, 刘 冬等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641)
[27] Zhang W J, Lorenz U, Appel F.Recovery, recrystallization and phase transformations during thermomechanical processing and treatment of TiAl-based alloys [J]. Acta Mater., 2000, 48: 2803
[28] Wallgram W, Schmölzer T, Cha L M, et al. Technology and mechanical properties of advanced γ-TiAl based alloys [J]. Int. J. Mater. Res., 2009, 100: 8
[29] Stark A, Oehring M, Pyczak F, et al. In situ observation of various phase transformation paths in Nb-rich TiAl alloys during quenching with different rates [J]. Adv. Eng. Mater., 2011, 13: 700
[30] Maziasz P J, Liu C T. Development of ultrafine lamellar structures in two-phase γ-TiAl alloys [J]. Metall. Mater. Trans., 1998, 29A: 105
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[4] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[5] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[6] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[7] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[8] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[9] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[10] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[11] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[12] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[13] 杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.
[14] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[15] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.