| 
					引用本文:
						|  |  
    					|  |  
    					| Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能 |  
						| 刘先锋1,2, 刘冬1(  ), 刘仁慈1, 崔玉友1, 杨锐1 |  
					| 1.中国科学院金属研究所 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016
 |  
						|  |  
    					| Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion |  
						| LIU Xianfeng1,2, LIU Dong1(  ), LIU Renci1, CUI Yuyou1, YANG Rui1 |  
						| 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. College of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
 |  
								刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.	
																												Xianfeng LIU,
																								Dong LIU,
																								Renci LIU,
																								Yuyou CUI,
																												Rui YANG. 
				Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. Acta Metall Sin, 2020, 56(7): 979-987.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| [1] | Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129 |  
																| [1] | (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129) |  
																| [2] | Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: successes, dilemmas, and future [J]. JOM, 2018, 70: 553 |  
																| [3] | Bewlay B P, Weimer M, Kelly T, et al. Intermetallic-based alloys science, technology, and applications [A]. Materials Research Society Symposia Proceedings [C]. Cambrige: Cambridge University Press, 2013: 49 |  
																| [4] | Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549 |  
																| [5] | Habel U, Heutling F, Helm D, et al. Forged intermetallic γ-TiAl based alloy low pressure turbine blade in the geared turbofan [A]. Proceeding of the 13th World Conference on Titanium [C]. Warrendale: TMS, 2016: 1223 |  
																| [6] | Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides [J]. Prog. Mater. Sci., 2016, 81: 55 |  
																| [7] | Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123 |  
																| [8] | Djanarthany S, Viala J C, Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl [J]. Mater. Chem. Phys., 2001, 72: 301 |  
																| [9] | Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim, Germany: Wiley, 2011: 1 |  
																| [10] | Kim Y W. Ordered intermetallic alloys, part III: Gamma titanium aluminides [J]. JOM, 1994, 46(7): 30 |  
																| [11] | Huang S C, Chesnutt J C. Structural Applications of Intermetallic Compounds [M]. Chapter 4, New York: Wiley, 2000: 1 |  
																| [12] | Semiatin S L, Chesnutt J C, Austin C, et al. Structural Intermetallics [M]. Warrendale: TMS, 1997: 263 |  
																| [13] | Xie J X, Liu J A. Metal Extrusion: Fundamental and Technology [M]. Beijing: Metallurgical Industry Press, 2002: 8 |  
																| [13] | (谢建新, 刘建安. 金属挤压理论与技术 [M]. 北京: 冶金工业出版社, 2002: 8) |  
																| [14] | Liu D. Hot extrusion process, microstructure control and mechanical properties of γ-TiAl alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2007 |  
																| [14] | (刘 冬. γ-TiAl热挤压成型工艺、组织控制及性能研究 [D]. 沈阳: 中国科学院金属研究所, 2007) |  
																| [15] | Liu R C. Microstructure evolution and mechanical properties of Ti-47Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013 |  
																| [15] | (刘仁慈. Ti-47Al-2Cr-2Nb-0.15B合金挤压变形组织演变及其力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2013) |  
																| [16] | Naka S. Structural Intermetallics [M]. Warrendale, PA: TMS, 1997: 313 |  
																| [17] | Kustner V, Oehring M, al AChatterjeeet. Gamma titanium aluminides 2003 [M]. Warrendale, PA: TMS, 2003: 89 |  
																| [18] | Imayev R M, Imayev V M, Khismatullin T G, et al. New approaches to designing alloys based on γ-TiAl+α2-Ti3Al phases [J]. Phys. Met. Metall., 2006, 102: 105 |  
																| [19] | Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAl alloy for blades and structural components [J]. Scr. Mater., 2002, 47: 399 |  
																| [20] | Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by means of hot forging and machining [J]. Intermetallics, 2005, 13: 971 |  
																| [21] | Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy [J]. Intermetallics, 2008, 16: 828 |  
																| [22] | Clemens H, Boeck B, Wallgram W, et al. Experimental studies and hermodynamic simulations of phase transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B alloys [A]. Materials Research Society Symposia Proceedings [C]. Warrendale, PA: MRS, 2009: 115 |  
																| [23] | Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy [J]. Intermetallics, 2014, 44: 128 |  
																| [24] | Lin B C. Study on effect of surface condition and casting defects on mechanical properties of TiAl [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2018 |  
																| [24] | (林博超. 表面状态和铸造缺陷对TiAl力学性能影响研究 [D]. 沈阳: 中国科学院金属研究所, 2018) |  
																| [25] | Wang X, Liu R C, Cao R X, et al. Effect of cooling rate on boride and room temperature tensile properties of β-solidifying γ-TiAl alloys [J]. Acta Metall. Sin., 2019, 56: 203 |  
																| [25] | (王 希, 刘仁慈, 曹如心等. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响 [J]. 金属学报, 2019, 56: 203) |  
																| [26] | Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641 |  
																| [26] | (刘仁慈, 王 震, 刘 冬等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641) |  
																| [27] | Zhang W J, Lorenz U, Appel F.Recovery, recrystallization and phase transformations during thermomechanical processing and treatment of TiAl-based alloys [J]. Acta Mater., 2000, 48: 2803 |  
																| [28] | Wallgram W, Schmölzer T, Cha L M, et al. Technology and mechanical properties of advanced γ-TiAl based alloys [J]. Int. J. Mater. Res., 2009, 100: 8 |  
																| [29] | Stark A, Oehring M, Pyczak F, et al. In situ observation of various phase transformation paths in Nb-rich TiAl alloys during quenching with different rates [J]. Adv. Eng. Mater., 2011, 13: 700 |  
																| [30] | Maziasz P J, Liu C T. Development of ultrafine lamellar structures in two-phase γ-TiAl alloys [J]. Metall. Mater. Trans., 1998, 29A: 105 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |