Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 703-708    DOI: 10.11900/0412.1961.2016.00286
  本期目录 | 过刊浏览 |
重熔工艺对K452合金高温拉伸性能的影响
杨金侠1(),徐福涛1,周动林2,孙元1,侯星宇1,崔传勇1
1 中国科学院金属研究所 沈阳 110016
2 哈尔滨东安发动机集团有限公司 哈尔滨 150066
Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature
Jinxia YANG1(),Futao XU1,Donglin ZHOU2,Yuan SUN1,Xingyu HOU1,Chuanyong CUI1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Harbin Dongan Engine Group Corporation LTD., Harbin 150066, China
引用本文:

杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.
Jinxia YANG, Futao XU, Donglin ZHOU, Yuan SUN, Xingyu HOU, Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature[J]. Acta Metall Sin, 2017, 53(6): 703-708.

全文: PDF(3849 KB)   HTML
摘要: 

采用不同重熔工艺制备K452合金试样, 测试试样在900 ℃下的拉伸性能。结果表明:当浇注温度为1430 ℃时, 试样的抗拉强度从410 MPa变化到 510 MPa,延伸率从 3.5% 变化到 22.0%,实验数据较分散;试样中O和N平均含量较高,尤其N含量达0.0028%之多;断口上存在大量疏松。当浇注温度提高到1500 ℃时,拉伸性能得到提高,试样中O和N的平均含量有所降低,断口上疏松减少。当合金经过1590 ℃保温5 min的高温净化处理,浇注温度仍为1500 ℃时,试样的拉伸性能大幅度提高,O和N的平均含量明显降低,断口上没有观察到疏松,实验数据具有较好的一致性。

关键词 高温合金拉伸性能疏松    
Abstract

K452 alloy is a nickel-based cast superalloy having the good tensile properties at high temperature and excellent corrosion resistance. It has been applied as a blade material of engines when environmental temperature is not above 950 ℃. It is found that the tensile properties of the alloy have become more scattered and unstable although its chemical compositions are not changed. Hence, the tensile properties of the alloy were studied in order to increase its stability at high temperature and improve its applied properties. Tensile specimens were prepared using the different re-melting processes. Tensile tests were done at 900 ℃. When the pouring temperature was 1430 ℃, tensile properties were not only lower than expected, but also had great degree of dispersion, i.e., the vales of ultimate strengths changed in the range of 410 MPa and 510 MPa, and the elongations changed in the range of 3.5% and 22.0%, the average contents of O and N were the highest among three tested conditions. The highest N content was 0.0028%. And the shrinkage area was higher than those in other two re-melting processes. When the pouring temperature was 1500 ℃, the tensile properties were improved, and their changing scopes became small, the average contents of O and N decreased, the shrinkage area decreased. When the refining temperature was 1590 ℃ and the holding time was 5 min, both average contents of O and N were decreased greatly, the shrinkage was not seen in the fracture surfaces. And the tensile properties were improved. Furthermore, their changing scopes were very small.

Key wordssuperalloy    tensile property    shrinkage
收稿日期: 2016-07-05     
基金资助:国家自然科学基金项目No.11332010
Process No. T1 / ℃ τ / min T2 / ℃
1 1500 3 1430
2 1500 3 1500
3 1590 5 1500
表1  重熔工艺参数
图1  重熔工艺No.1浇注的试样No.5的断口形貌
Sample No. wO / % wN / % T / ℃ Rm / MPa A / %
1 - - 901 455 4.0
2 0.0019 0.0028 898 410 Brittle fracture
3 0.0015 0.0018 903 485 4.0
4 - - 900 495 12.0
5 0.0017 0.0015 902 455 3.5
6 - - 899 450 19.0
7 0.0011 0.0013 903 510 20.0
8 0.0010 0.0009 899 495 22.0
9 - - 900 480 8.4
10 - - 898 490 6.5
Average 0.00141 0.00171 900.4 471.5 11.04
Changed scope 0.0010~0.0019 0.0009~0.0028 898~903 410~510 3.5~22.0
表2  重熔工艺No.1浇注的K452合金中O和N含量及拉伸性能
图2  重熔工艺No.1浇注的试样No.7的断口形貌
图3  重熔工艺No.2浇注的No.1试样断口形貌
Sample No. wO / % wN / % T / ℃ Rm / MPa A / %
1 0.0011 0.0009 900 490 10.0
2 0.0007 0.0009 897 470 20.0
3 0.0011 0.0006 903 490 17.6
4 0.0009 0.0009 902 530 16.5
5 0.0012 0.0013 899 505 12.0
6 0.0010 0.0009 903 495 17.6
Average 0.0010 0.00091 900.7 495 15.61
Changed scope 0.0007~0.0012 0.0006~0.0013 897~903 470~530 10.0~20.0
表3  重熔工艺No.2浇注的K452合金中O和N含量及拉伸性能
Sample No. wO / % wN / % T / ℃ Rm / MPa A / %
1 0.0007 0.0006 902 500 23.0
2 0.0005 0.0006 899 530 23.5
3 0.0005 0.0004 903 500 24.0
4 0.0008 0.0006 901 490 23.0
5 0.0009 0.0004 902 490 18.0
6 0.0005 0.0006 900 500 19.5
Average 0.00065 0.0005 901.3 501.6 21.67
Changed scope 0.0005~0.0009 0.0004~0.0006 899~903 490~530 18~24
表4  重熔工艺No.3浇注的K452合金中O和N含量及拉伸性能
图4  重熔工艺No.3浇注的试样No.4的断口形貌
[1] Guo J T, Yuan C. China Superalloys Handbook, Book 3: Cast Superalloy et al [M]. Beijing: China Standard Press, 2012: 222
[1] (郭建亭, 袁超. 中国高温合金手册, 下卷: 铸造高温合金等 [M]. 北京: 中国标准出版社, 2012: 222)
[2] Guo J T.Materials Science and Engineering for Superalloys, Book 3: Materals and Engineering Application for Superalloy [M]. Beijing: Science Press, 2010: 328
[2] (郭建亭. 高温合金材料学, 下册: 高温合金材料与工程应用 [M]. 北京: 科学出版社, 2010: 328)
[3] Qin X Z.Microstructure and property stability of cast Ni-base superalloys K452 and K446 during long-term thermal exposure [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
[3] (秦学智. 铸造高温合金K452和K446在长期时效期间的组织和性能的演变 [D]. 沈阳: 中国科学院金属研究所, 2008)
[4] Pope D P, Ezz S S.Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ'[J]. Int. Met. Rev., 1984, 29: 136
[5] Sieb?rger D, Knake H, Glatzel U.Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases[J]. Mater. Sci. Eng., 2001, A298: 26
[6] Copley S M, Kear B H.A dynamic theory of coherent precipitation hardening with application to nickel-base superalloys[J]. Trans. Metall. Soc. AIME, 1967, 239: 984
[7] Bettge D, ?sterle W, Ziebs J.Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution[J]. Z. Metallkd., 1995, 86: 190
[8] Chu Z K.Investigation of mechanical property and deformation mechanism of DZ951 alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
[8] (储昭贶. DZ951合金力学性能及变形机制的研究 [D]. 沈阳: 中国科学院金属研究所, 2008)
[9] He L Z, Zheng Q, Sun X F, et al.Low ductility at intermediate temperature of Ni-base superalloy M963[J]. Mater. Sci. Eng., 2004, A380: 340
[10] Milligan W W, Antolovich S D.Yielding and deformation behavior of the single crystal superalloy PWA 1480[J]. Metall. Trans., 1987, 18A: 85
[11] Wang J, Zhou L Z, Sheng L Y, et al.The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure[J]. Mater. Des., 2012, 39: 55
[12] Qin X Z, Guo J T, Yuan C, et al.Precipitation and thermal instability of M23C6 carbide in cast Ni-base superalloy K452[J]. Mater. Lett., 2008, 62: 258
[13] Qin X Z, Guo J T, Yuan C, et al.Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy[J]. Mater. Sci. Eng., 2008, A485: 74
[14] Qin X Z, Guo J T, Yuan C, et al.Thermal stability of primary carbides and carbonitrides in two cast Ni-base superalloys[J]. Mater. Lett., 2008, 62: 2275
[15] Yang J X, Zheng Q, Ji M Q, et al.Effects of refining processes on metallurgical defects and room temperature' tensile properties of superalloy IN792[J]. Rare Met. Mater. Eng., 2012, 41: 692
[15] (杨金侠, 郑启, 纪曼青等. 精炼工艺对IN792合金冶金缺陷和拉伸性能的影响[J]. 稀有金属材料与工程, 2012, 41: 692
[16] Yang J X, Zheng Q, Sang Z R, et al.Effects of melting treatments on the mechanical properties of reverted DZ40M alloy[J]. Acta Metall. Sin., 2010, 46: 1511
[16] (杨金侠, 郑启, 桑志茹等. 熔体处理对DZ40M返回合金力学性能的影响[J]. 金属学报, 2010, 46: 1511)
[17] Niu J P.Investigation on super refining Ni-based superalloy by vaccum induction melting [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2002
[17] (牛建平. 镍基高温合金超纯净真空感应熔炼工艺的研究 [D]. 沈阳: 中国科学院金属研究所, 2002)
[18] Niu J P, Yang K N, Jin T, et al.Desulphurization during VIM refining Ni-base superalloy[J]. Acta Metall. Sin., 2001, 37: 499
[18] (牛建平, 杨克努, 金涛等. Ni基高温合金的真空冶炼脱硫[J]. 金属学报, 2001, 37: 499)
[19] Niu J P, Yang K N, Jin T, et al.Denitrogenation during VIM refining Ni-base superalloy[J]. Acta Metall. Sin., 2001, 37: 943
[19] (牛建平, 杨克努, 金涛等. 真空感应熔炼超纯净镍基高温合金脱氮的研究[J]. 金属学报, 2001, 37: 943)
[20] Yuan C, Guo J T, Wang T L, et al.Effect of revert proportion on microstructure and property of a cast cobalt-base superalloy K640S[J]. Acta Metall. Sin., 2000, 36: 961
[20] (袁超, 郭建亭, 王铁利等. 返回料添加比例对铸造钴基高温合金K640S组织与性能的影响[J]. 金属学报, 2000, 36: 961)
[21] Li C.Metallurgy Mechanism [M]. Harbin: Harbin Institute of Technology Press, 1996: 196
[21] (李超. 金属学原理 [M]. 哈尔滨: 哈尔滨工业大学出版社,1996: 196)
[22] Yang J X, Sun Y, Jin T, et al.Microstructure and mechanical properties of a Ni-based superalloy with refined grains[J]. Acta Metall. Sin., 2014, 50: 839
[22] (杨金侠, 孙元, 金涛等. 一种细晶铸造镍基高温合金的组织与力学性能[J]. 金属学报, 2014, 50: 839)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[10] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[11] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[13] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.