Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 988-996    DOI: 10.11900/0412.1961.2019.00429
  本期目录 | 过刊浏览 |
难变形高温合金GH4975的铸态组织及均匀化
向雪梅, 江河(), 董建新, 姚志浩
北京科技大学材料科学与工程学院 北京 100083
As-Cast Microstructure Characteristic and Homogenization of a Newly Developed Hard-Deformed Ni-Based Superalloy GH4975
XIANG Xuemei, JIANG He(), DONG Jianxin, YAO Zhihao
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

向雪梅, 江河, 董建新, 姚志浩. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020, 56(7): 988-996.
Xuemei XIANG, He JIANG, Jianxin DONG, Zhihao YAO. As-Cast Microstructure Characteristic and Homogenization of a Newly Developed Hard-Deformed Ni-Based Superalloy GH4975[J]. Acta Metall Sin, 2020, 56(7): 988-996.

全文: PDF(3295 KB)   HTML
摘要: 

应用FESEM、EBSD、萃取相分析及热模拟压缩等实验方法研究了难变形高温合金GH4975的铸态组织,铸态热压缩及均匀化过程中的组织演变。结果表明,GH4975合金铸态组织的主要析出相为γ′相、一次MC碳化物相及共晶相。合金中的主要偏析元素为Ti、Nb和W。铸态合金经热压缩后极易开裂,开裂主要由一次碳化物、共晶相及一次粗大γ′相的不协调变形导致。经1180 ℃、50 h均匀化热处理后,合金中的元素偏析完全消除。在1180 ℃均匀化过程中除共晶相回溶外,一次碳化物的数量和形态发生了明显的变化。均匀化后合金中的强化相和一次碳化物发生了综合互协调作用,使合金的热变形能力显著提高。

关键词 GH4975难变形高温合金组织特征均匀化    
Abstract

Alloy GH4975 is a newly developed hard-deformed Ni-based superalloy which can keep high performance at elevated temperatures. And it is expected to be applied above 850 ℃. The as-cast microstructure, hot deformation of as-cast alloy, and the microstructural evolution during homogenization of alloy GH4975 were investigated utilizing a combination of FESEM, EBSD and extractive phase analysis. The results show that the γ′ phase, primary MC carbide and eutectic phase are the main precipitates in the as-cast alloy. Alloying elements Ti, Nb and W exhibit severe microsegregation during solidification. Cracking phenomenon can be observed in the hot-deformed samples of as-cast alloy due to the incoordination deformation between matrix and the MC carbide, primary coarse γ′ phase and eutectic phase. Microsegregation of alloying elements is eliminated after heat treated at 1180 ℃ for 50 h. Furthermore, besides of the redissolution of eutectic phase, the morphologies and size of MC carbide also evolved during homogenization process. Thermoplasticity and deformability can be improved obviously after homogenization due to improvement of the coordinated deformation capacity of MC carbide and strengthening phase.

Key wordshard-deformed superalloy GH4975    microstructure characteristic    homogenization
收稿日期: 2019-12-13     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51571012)
作者简介: 向雪梅,女,1992年生,博士生
图1  铸态GH4975合金的枝晶形貌、枝晶间析出相形貌及萃取析出相粉末的XRD谱
图2  铸态GH4975合金中γ′相形貌的SEM像
图3  铸态GH4975合金DSC加热曲线
图4  铸态GH4975合金在1160 ℃进行30%变形量热压缩后内部裂纹的OM像和EBSD像
图 5  铸态GH4975热压缩试样中的碳化物形貌
图6  铸态GH4975热压缩试样中裂纹沿共晶相和粗大γ′相扩展
Element5 h10 h20 h50 h
Ti0.380.250.200.15
Nb0.320.230.210.16
W0.830.680.530.27
表1  GH4975合金1180 ℃不同时间均匀化后元素残余偏析系数
图7  GH4975合金1180 ℃均匀化过程中的枝晶形貌演化
图8  GH4975合金1180 ℃均匀化过程中的析出相演化
图9  GH4975合金1180 ℃均匀化后γ′相的SEM像
图10  GH4975合金1180 ℃、10 h均匀化后碳化物形貌
图11  不同均匀化程度的GH4975合金在1200 ℃、压缩量50%、应变速率0.1 s-1热变形的真应力-真应变曲线及铸态和均匀化态试样的宏观形貌
图12  不同均匀化程度GH4975合金样品热变形后再结晶EBSD像
[1] Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeron. Mater., 2016, 36(3): 27
doi: 10.11868/j.issn.1005-5053.2016.3.005
[1] (杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
doi: 10.11868/j.issn.1005-5053.2016.3.005
[2] Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
[2] (杜金辉, 吕旭东, 董建新等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115)
doi: 10.11900/0412.1961.2019.00142
[3] Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
doi: 10.11900/0412.1961.2019.00078
[3] (张北江, 黄 烁, 张文云等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095)
doi: 10.11900/0412.1961.2019.00078
[4] Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy [J]. J. Alloys Compd., 2009, 486: 195
[5] Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
[5] (张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227)
[6] Chen J Y, Dong J X, Zhang M C, et al. Deformation mechanisms in a fine-grained Udimet 720Li nickel-base superalloy with high volume fractions of γ′ phases [J]. Mater. Sci. Eng., 2016, A673: 122
[7] Liu F F, Chen J Y, Dong J X, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
[8] Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ+γ′ duplex aggregates generated during thermomechanical processing of nickel-base superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Nashvill: The Minerals, Metals & Materials Society, 2016: 287
[9] Huang F X. Development of turbine disk superalloys in Russia [J]. J. Aeron. Mater., 1993, 13(3): 49
[9] (黄福祥. 涡轮盘用变形高温合金在俄国的发展 [J]. 航空材料学报, 1993, 13(3): 49)
[10] Ruan J J, Ueshima N, Oikawa K. Phase transformations and grain growth behaviors in superalloy 718 [J]. J. Alloys Compd., 2018, 737: 83
[11] Sun W, Qin X Z, Guo J T, et al. Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni-Fe-Cr based superalloy during long-term thermal exposure [J]. Mater. Des., 2015, 69: 70
[12] Xiang X M, Dong J X, Jiang H, et al. Microstructure evolution of 617B Ni-based superalloy during long-term aging [J]. Rare Met. Mater. Eng., 2019, 47: 865
[12] (向雪梅, 董建新, 江 河等. 617B镍基高温合金长期时效组织演变 [J]. 稀有金属材料与工程, 2019, 47: 865)
[13] Tan Y G, Liu F, Zhang A W, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК 151 [J]. Acta Metall. Sin. (Engl. Lett.)., 2019, 32: 1298
[14] Xiang X M, Jiang H, Dong J X, et al. Thoughts on high performance superalloy design and microstructural characteristics of a newly designed Ni-Cr-Co-W superalloy applied above 850 ℃ [J]. Mater. Sci. Forum, 2019, 944: 13
[15] Gong L, Chen B, Zhang L, et al. Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 811
[16] Gui W M, Zhang H Y, Yang M, et al. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy [J]. J. Alloys Compd., 2017, 728: 145
[17] Chen X F, Yao Z H, Dong J X, et al. The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure [J]. J. Alloys Compd., 2018, 735: 928
[18] Dong J X, Li L H, Li H Y, et al. Effect of extent of homogenization on the hot deformation recrystallization of superalloy ingot in cogging process [J]. Acta Metall. Sin., 2015, 51: 1207
[18] (董建新, 李林翰, 李浩宇等. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响 [J]. 金属学报, 2015, 51: 1207)
[19] Semiatin S L, Kramb R C, Turner R, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
[20] Zhang H, Liu Y, Chen X, et al. Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content [J]. J. Alloys Compd., 2017, 727: 410
[21] Zhu G N, Bi Z N, Dong J X, et al. Microsegregation and homogenization of nickel base corrosion resistant alloy C-276 ingots [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 628
[21] (朱冠妮, 毕中南, 董建新等. 镍基耐蚀合金C-276铸锭元素偏析和均匀化工艺 [J]. 北京科技大学学报, 2010, 32: 628)
[22] Mei S Y, Zheng L, Meng Z B, et al. Microsegregation and homogenization of GH105 superalloy ingots [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 714
[22] (梅声勇, 郑 磊, 蒙肇斌等. GH105合金铸锭元素偏析和均匀化工艺 [J]. 北京科技大学学报, 2009, 31: 714)
[23] Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys [J]. Mater. Sci. Eng., 2010, A527: 5528
[24] Su X L, Xu Q Y, Wang R N, et al. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment [J]. Mater. Des., 2018, 141: 296
[25] Zhao S Q, Xie X S, Smith G D, et al. Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy [J]. Mater. Lett., 2004, 58: 1784
doi: 10.1016/j.matlet.2003.10.053
[1] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[2] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[3] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[4] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[5] 董建新,李林翰,李浩宇,张麦仓,姚志浩. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响[J]. 金属学报, 2015, 51(10): 1207-1218.
[6] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[7] 曹零勇,郭明星,崔华,蔡元华,张巧霞,胡晓倩,张济山. Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究[J]. 金属学报, 2013, 29(4): 428-434.
[8] 张月来,段德莉,赵宇航,侯思焓,李曙. 泡沫NiCrAl电热合金的制备及其电学性能[J]. 金属学报, 2013, 49(2): 214-220.
[9] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[10] 张永皞 张志清 Robert E. Sanders 刘庆. AA3104铝合金均匀化过程中的(Fe, Mn)Al6相向α-Al12(Fe, Mn)3Si相转变研究[J]. 金属学报, 2012, 48(3): 351-356.
[11] 潘晓林 汪波 孙文儒 涂赣峰 郭守仁 胡壮麒. 均匀化处理对GH742合金热变形行为的影响[J]. 金属学报, 2012, 48(11): 1403-1408.
[12] 林双平 黄晖 文胜平 聂祚仁. 含Er 5083合金均匀化退火过程中Al3Er相的TEM观察[J]. 金属学报, 2009, 45(8): 978-982.
[13] 赵志浩; 王静; 左玉波; 崔建忠 . 均匀化处理对低频电磁铸造7050铝合金微观组织的影响[J]. 金属学报, 2007, 43(9): 956-960 .
[14] 金军兵; 王智祥; 刘雪峰; 谢建新 . 均匀化处理对AZ91镁合金组织和力学性能的影响[J]. 金属学报, 2006, 42(10): 1014-1018 .
[15] 郭守仁;卢德忠. 高Ti合金中液析η相的研究[J]. 金属学报, 1991, 27(6): 27-32.