Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 403-409    DOI: 10.11900/0412.1961.2015.00460
  论文 本期目录 | 过刊浏览 |
9Ni钢拉伸性能的同步辐射高能X射线原位研究*
张玉妥1,2,李丛1,2,王培2(),李殿中2
1 沈阳理工大学材料科学与工程学院, 沈阳 110159
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
IN SITU SYNCHROTRON X-RAY DIFFRACTION INVESTIGATION ON TENSILE PROPERTIES OF 9Ni STEEL
Yutuo ZHANG1,2,Cong LI1,2,Pei WANG2(),Dianzhong LI2
1 College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(952 KB)   HTML
摘要: 

利用热膨胀仪、同步辐射高能X射线衍射、XRD和TEM等对经淬火+两相区处理+不同温度回火处理的9Ni钢中逆变奥氏体含量、逆变奥氏体在室温单轴拉伸过程的形变诱导相变及其对强度的影响规律进行了研究. 结果表明, 经780 ℃淬火和680 ℃两相区处理后, 实验钢中不含逆变奥氏体, 而在随后的回火过程中产生一定量的逆变奥氏体. 逆变奥氏体含量随回火温度的上升先升高而后降低, 600 ℃回火时逆变奥氏体含量最高. 在室温拉伸过程中, 逆变奥氏体的形变诱导相变开始于宏观屈服之后, 在颈缩前基本全部转变成马氏体, 从而屈服强度随回火温度的升高先减小后增大, 600 ℃回火时屈服强度最小; 抗拉强度随回火温度的升高而增大, 640 ℃回火时抗拉强度最大.

关键词 9Ni钢原位同步辐射X射线衍射拉伸性能逆变奥氏体形变诱导相变    
Abstract

9Ni steel has been widely used in liquid natural gas tanks and pipelines because of its excellent toughness at low temperature after quenching, larmellarizing and tempering heat treatment. Recently, in the cryogenic field it is used in some forgings, which have a strict demanding on the strength of this material. In order to clarify the relationship between the strength and the reversed austenite in the 9Ni steel after different temperature tempering, a systematic investigation on the amount of reversed austenite, deformation induced phase transformation (DIPT) of reversed austenite and its influence on the mechanical properties of 9Ni steel has been carried out by dilatometer, in situ synchrotron high-energy X-ray diffraction, XRD and TEM. The experimental results indicated that the amount of reversed austenite showed a parabolic trend with increase of tempering temperature and obtained the highest value after 600 ℃ tempering. And the DIPT of reversed austenite occurred after yielding during uniaxial tension test. This phenomenon induced that the yield strength of the experimental steel decreased to a minimum value after 600 ℃ tempering, and then, the value increased with further the increase of tempering temperature. However, the tensile strength of experimental steel increased with the increase of tempering temperature and reached the maximum after 640 ℃ tempering, because almost all of the reversed austenite transforms to martensite before necking.

Key words9Ni steel    in situ synchrotron radiation X-ray diffraction    tensile property    reversed austenite    deformation induced phase transformation
收稿日期: 2015-08-30     
基金资助:*国家自然科学基金资助项目 51201167

引用本文:

张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
Yutuo ZHANG, Cong LI, Pei WANG, Dianzhong LI. IN SITU SYNCHROTRON X-RAY DIFFRACTION INVESTIGATION ON TENSILE PROPERTIES OF 9Ni STEEL. Acta Metall Sin, 2016, 52(4): 403-409.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00460      或      https://www.ams.org.cn/CN/Y2016/V52/I4/403

图1  9Ni钢经淬火和两相区处理及不同温度回火后的显微组织
图2  9Ni钢中逆变奥氏体体积分数随回火温度的变化
图3  9Ni钢的室温单轴拉伸强度随回火温度的变化
图4  原位拉伸实验中9Ni钢中逆变奥氏体含量随工程应力变化的曲线
图5  原位拉伸实验中9Ni钢的加工硬化指数和逆变奥氏体含量随真应变的变化曲线
图6  未变形、加载应力至500和700 MPa时9Ni钢的TEM明场、暗场像和SAED谱
图7  9Ni钢经淬火和两相区处理后的XRD谱
图8  9Ni钢经淬火和两相区处理后的热膨胀曲线
[1] Liu D F, Yang X L, Hou L F, Cui T X, Hu Y T, Wei Y H.J Iron Steel Res, 2009; 21(9): 1
[1] (刘东风, 杨秀利, 侯利锋, 崔天燮, 胡玉亭, 卫英慧. 钢铁研究学报, 2009; 21(9): 1)
[2] Yang Y, Cai Q, Tang D, Wu H.Int J Miner Metall Mater, 2010; 17: 587
[3] Yan C Y, Li W S, Xue Z K, Bai S W, Feng B.Trans China Weld Inst, 2008; 29(3): 49
[3] (严春妍, 李午申, 薛振奎, 白世武, 冯斌. 焊接学报, 2008; 29(3): 49)
[4] Chen J. Master Thesis, Northest University, Shenyang, 2010
[4] (陈俊. 东北大学硕士学位论文, 沈阳, 2010)
[5] Zhang K, Wu H B, Tang D, Sun W H.J Univ Sci Technol Beijing, 2012; 34: 651
[5] (张坤, 武会宾, 唐荻, 孙卫华. 北京科技大学学报, 2012; 34: 651)
[6] Yang C D, Tang W J, Zhang H Q, Cong Y, Hou H.Hot Working Tech, 2008; 37(2): 73
[6] (杨才定, 唐文军, 张汉谦, 丛郁, 候洪. 热加工工艺, 2008; 37(2): 73)
[7] Xie Z L, Liu Z Y, Chen J, Wang G D.Trans Mater Heat Treat, 2013; 34(5): 51
[7] (谢章龙, 刘振宇, 陈俊, 王国栋. 材料热处理学报, 2013; 34(5): 51)
[8] Li G L, Meng X M, Zhang F T, Wu Y K.Acta Metall Sin, 1996; 32: 1121
[8] (李光来, 孟祥敏, 张弗天, 吴玉琨. 金属学报, 1996; 32: 1121)
[9] Zhang F T, Wang J Y, Guo Y Y.Acta Metall Sin, 1984; 20: 405
[9] (张弗天, 王景韫, 郭蕴宜. 金属学报, 1984; 20: 405)
[10] Meng X M, Li G L, Zhang F T, Wu Y K.Acta Metall Sin, 1998; 34: 565
[10] (孟祥敏, 李光来, 张弗天, 吴玉琨. 金属学报, 1998; 34: 565)
[11] Yang Y H, Cai Q W, Wu H B, Wang H.Acta Metall Sin, 2009; 45: 270
[11] (杨跃辉, 蔡庆伍, 武会宾, 王华. 金属学报, 2009; 45: 270)
[12] Fultz B, Kim J I, Kim Y H, Kim H J, Fior G O, Morris J W.Metall Trans, 1985; 16A: 2237
[13] Fultz B, Morris J W.Metall Trans, 1985; 12A: 2251
[14] Fultz B, Kim J I, Kim Y H, Morris J W.Metall Trans, 1986; 17A: 967
[15] Zhang F T, Lou Z F, Ye Y G, Li D Y.Acta Metall Sin, 1994; 30: 239
[15] (张弗天, 楼志飞, 叶裕恭, 李端义. 金属学报, 1994; 30: 239)
[16] Syn C K, Fultz B, Morris J W.Metall Trans, 1978; 9A: 1635
[17] Lei M, Guo Y Y.Acta Metall Sin, 1989; 25: 13
[17] (雷鸣, 郭蕴宜. 金属学报, 1989; 25: 13)
[18] Zhang K, Tang D, Wu H B.Heat Treat Met, 2012; 37(3): 85
[18] (张坤, 唐荻, 武会宾. 金属热处理, 2012; 37(3): 85)
[19] Jang J, Ju J B, Lee B W, Kwon D, Kim W S.Mater Sci Eng, 2003; A340: 68
[20] Zhao X, Pan T, Wang Q, Su H, Yang C, Yang Q.J Iron Steel Res Int, 2011; 18(5): 47
[21] Nakada N, Syarif J, Tsuchiyama T, Takaki S.Mater Sci Eng, 2004; A374: 137
[22] Zhang S H, Wang P, Li D Z, Li Y Y.Mater Sci Eng, 2015; A635: 129
[23] Zhang S H, Wang P, Li D Z, Li Y Y.Acta Metall Sin, 2015; 51: 1306
[23] (张盛华, 王培, 李殿中, 李依依. 金属学报, 2015; 51: 1306)
[24] Wang P, Xiao N M, Lu S P, Li D Z, Li Y Y.Mater Sci Eng, 2013; A586: 292
[25] Jacques P J, Furnemont Q, Godet S, Pardoen T, Conlon K T, Delannay F.Philos Mag, 2006; 86: 2371
[26] Jacques P J, Furnémont Q, Lani F, Pardoen T, Delannay F.Acta Mater, 2007; 55: 3681
[27] Wang P, Lu S P, Li D Z, Kang X H, Li Y Y.Acta Metall Sin, 2008; 44: 681
[27] (王培, 陆善平, 李殿中, 康秀红, 李依依. 金属学报, 2008; 44: 681)
[28] Tamura I, Tomota Y, Ozawa M.Proc Conf on Microstructure and Design of Alloys, London: Institute of Metals and Iron and Steel Institute, 1973: 611
[1] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[4] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[5] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[6] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[7] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[8] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[9] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[10] 杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.
[11] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[12] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.
[13] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[14] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[15] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.