|
|
合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响 |
王力1,董超芳1( ),张达威1,孙晓光2,Thee Chowwanonthapunya3,满成4,肖葵1,李晓刚1( ) |
1. 北京科技大学腐蚀与防护中心 北京 100083 2. 中车青岛四方机车车辆股份有限公司 青岛 266111 3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand 4. 中国海洋大学材料科学与工程学院 青岛 266100 |
|
Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand |
WANG Li1,DONG Chaofang1( ),ZHANG Dawei1,SUN Xiaoguang2,Chowwanonthapunya Thee3,MAN Cheng4,XIAO Kui1,LI Xiaogang1( ) |
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China 2. CRRC Qingdao Sifang Co. , Ltd. , Qingdao 266111, China 3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand 4. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
引用本文:
王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
Li WANG,
Chaofang DONG,
Dawei ZHANG,
Xiaoguang SUN,
Thee Chowwanonthapunya,
Cheng MAN,
Kui XIAO,
Xiaogang LI.
Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. Acta Metall Sin, 2020, 56(1): 119-128.
[1] | Huang B Y, Li C G, Shi L K, et al. Non-Ferrous Metal Materials Manual (I) [M]. Beijing: Chemical Industry Press, 2009: 109 | [1] | (黄伯云, 李成功, 石开力等. 有色金属材料手册(上) [M]. 北京: 化学工业出版社, 2009: 109) | [2] | Yasakau K A, Zheludkevich M L, Ferreira M G S. Intermetallic Matrix Composites: Properties and Applications [M]. Sawston, Cambridge: Woodhead Publishing, 2018: 425 | [3] | Liu Y J, Wang Z Y, Ke W. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2013, 23: 1208 | [3] | (刘艳洁, 王振尧, 柯 伟. 2024-T3铝合金在模拟海洋大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 1208) | [4] | Xiao Y D, Wang G Y, Li X G. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 248 | [4] | (萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报, 2003, 23: 248) | [5] | Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431 | [5] | (王 力, 郭春云, 肖葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431) | [6] | Grimm M, Lohmüller A, Singer R F, et al. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys [J]. Corros. Sci., 2019, 155: 195 | [7] | van Beek H J, Mittemeijer E J. Amorphous and crystalline oxides on aluminium [J]. Thin Solid Films, 1984, 122: 131 | [8] | Gao M, Sun Z H, Liu M, et al. Atmospheric corrosion behavior of 7B04 aluminum alloy in the presence of NaCl and SO2 [J]. Environ. Technol., 2016, 34(5): 9 | [8] | (高 蒙, 孙志华, 刘 明等. 7B04铝合金在NaCl沉积与SO2环境下的大气腐蚀行为 [J]. 环境技术, 2016, 34(5): 9) | [9] | Zhou H R, Li X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film [J]. Equip. Environ. Eng., 2006, 3(1): 1 | [9] | (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展 [J]. 装备环境工程, 2006, 3(1): 1) | [10] | Fratila-Apachitei L E, Terryn H, Skeldon P, et al. In?uence of substrate microstructure on the growth of anodic oxide layers [J]. Electrochim. Acta, 2004, 49: 1127 | [11] | Wang B B, Wang Z Y, Cao G W, et al. Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China [J]. Acta Metall. Sin., 2014, 50: 49 | [11] | (王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为 [J]. 金属学报, 2014, 50: 49) | [12] | Wei X, Dong C F, Chen Z H, et al. A DFT study of the adsorption of O2 and H2O on Al(111) surfaces [J]. RSC Adv., 2016, 6: 56303 | [13] | Man C, Dong C F, Xiao K, et al. The combined effect of chemical and structural factors on pitting corrosion induced by MnS-(Cr, Mn, Al)O duplex inclusions [J]. Corrosion, 2018, 74: 312 | [14] | Tanem B S, Svenningsen G, M?rdalen J. Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy [J]. Corros. Sci., 2005, 47: 1506 | [15] | Zheng C B, Li C L, Yi G, et al. Corrosion behavior of high-strength aluminum alloys 6061 and 7075 in simulated marine atmosphere [J]. Mater. Prot., 2014, 47(6): 38 | [15] | (郑传波, 李春岭, 益 帼等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47(6): 38) | [16] | Suo X N, Guo C, Kong D C, et al. Corrosion behaviour of TiN and CrN coatings produced by magnetron sputtering process on aluminium alloy [J]. Int. J. Electrochem. Sci., 2019, 14: 826 | [17] | Chen M A, Ou Y C, Fu Y H, et al. Effect of friction stirred Al-Fe-Si particles in 6061 aluminum alloy on structure and corrosion performance of MAO coating [J]. Surf. Coat. Technol., 2016, 304: 85 | [18] | Man C, Dong C F, Cui Z Y, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH [J]. Appl. Surf. Sci., 2018, 427: 763 | [19] | Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185 | [20] | Chung I C, Chung C K, Su Y K. Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid [J]. Surf. Coat. Technol., 2017, 313: 299 | [21] | Nejadseyfi O, Shokuhfar A, Dabiri A, et al. Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy [J]. J. Alloys Compd., 2015, 648: 912 | [22] | de Miera M S, Curioni M, Skeldon P, et al. The behaviour of second phase particles during anodizing of aluminium alloys [J]. Corros. Sci., 2010, 52: 2489 | [23] | Huang L P, Chen K H, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2012, B177: 862 | [24] | Esfahani Z, Rahimi E, Sarvghad M, et al. Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint [J]. J. Alloys Compd., 2018, 744: 174 | [25] | Ornek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|