Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 119-128    DOI: 10.11900/0412.1961.2019.00217
  研究论文 本期目录 | 过刊浏览 |
合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响
王力1,董超芳1(),张达威1,孙晓光2,Thee Chowwanonthapunya3,满成4,肖葵1,李晓刚1()
1. 北京科技大学腐蚀与防护中心 北京 100083
2. 中车青岛四方机车车辆股份有限公司 青岛 266111
3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
4. 中国海洋大学材料科学与工程学院 青岛 266100
Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand
WANG Li1,DONG Chaofang1(),ZHANG Dawei1,SUN Xiaoguang2,Chowwanonthapunya Thee3,MAN Cheng4,XIAO Kui1,LI Xiaogang1()
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. CRRC Qingdao Sifang Co. , Ltd. , Qingdao 266111, China
3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
4. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
Li WANG, Chaofang DONG, Dawei ZHANG, Xiaoguang SUN, Thee Chowwanonthapunya, Cheng MAN, Kui XIAO, Xiaogang LI. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. Acta Metall Sin, 2020, 56(1): 119-128.

全文: PDF(27368 KB)   HTML
摘要: 

在泰国曼谷地区对5083、6063和7020 3种铝合金进行为期1 a的暴晒实验,采用SEM、电化学实验、XPS和扫描Kelvin探针显微镜(SKPFM)对3种铝合金初期腐蚀形貌及腐蚀机理进行研究。结果表明:6063铝合金中Mg、Si、Fe等合金元素含量较少,腐蚀电位相对较高,约为-0.66 V (vs SCE),腐蚀产物膜较为致密,耐蚀性较好,在泰国曼谷地区的腐蚀速率约为0.7 g/(m2·a)。7020铝合金含有较多Mg、Zn等合金元素,腐蚀电位约为-0.78 V (vs SCE),腐蚀最为严重,腐蚀速率约为3.26 g/(m2·a)。3种铝合金均含有Mn、Si、Fe等合金元素,从而形成Fe-Si-Al或Fe-Si(Mn)-Al第二相,第二相表面电位高于基体225~280 mV,在大气环境中第二相作为阴极相,周围的基体Al优先溶解脱落,成为点蚀坑。

关键词 铝合金泰国曼谷大气腐蚀点蚀    
Abstract

With the rapid development of rail transit, high-speed trains are gradually exported to Southeast Asian countries. Aluminum alloy is widely used as a structural material such as train body and rail beam in high-speed trains, so that it is important to study the corrosion behavior of different aluminum alloy in Southeast Asia. The exposure test was conducted on 5083, 6063 and 7020 aluminum alloys in Bangkok, Thailand for 1 a. SEM, XPS, electrochemical experiment and scanning Kelvin probe force microscopy (SKPFM) were used to study the corrosion morphology and corrosion mechanism of different aluminum alloys. The results showed that the corrosion potential of 6063 aluminum alloys were relatively high, about -0.66 V (vs SCE), and the corrosion morphologies were relatively mild, which was due to less alloy elements such as Mg, Si and Fe in the 6063 aluminum alloys. The corrosion rate of 6063 aluminum alloys in Bangkok, Thailand was about 0.7 g/(m2·a). 7020 aluminum alloy contains more Zn elements, and the corrosion potential was about -0.78 V (vs SCE). The corrosion rate was the highest, about 3.26 g/(m2·a). The second phase of Fe-Si-Al or Fe-Si(Mn)-Al formed in the microstructure of the three aluminum alloys. The surface potential of the second phase was higher than that of the matrix, about 225~280 mV. In the atmospheric environment, the second phase acted as the cathode phase, and the surrounding matrix Al dissolved preferentially. The second phase fell off and formed a pit.

Key wordsaluminum alloy    Bangkok Thailand    atmospheric corrosion    pitting
收稿日期: 2019-07-03     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划 项目(2017YFB0702300);国家自然科学基金项目(51871028);国家材料环境腐蚀平台项目(2005DKA10400)
作者简介: 王 力,男,1992年生,博士生
Al alloySiMnCrCuTiFeMgZnAl
50830.0440.600.0770.0300.0150.224.220.0086Bal.
60630.600.180.120.0140.0380.150.650.01Bal.
7020<0.100.450.160.100.0470.0961.144.58Bal.
表1  实验材料的化学成分 (mass fraction / %)
图1  5083、6063和7020铝合金的EBSD像
图2  5083、6063和7020 3种铝合金在曼谷暴晒1 a后的宏观和微观腐蚀形貌
图3  5083、6063和7020 3种铝合金曼谷暴晒1 a后的微观表面和截面SEM像
图4  在曼谷暴晒1 a后3种铝合金在0.1 mol/L NaCl中的极化曲线
图5  曼谷暴晒1 a后5083、6063和7020铝合金在0.1 mol/L NaCl中的电化学阻抗谱(EIS)
图6  EIS结果拟合电路图

Al alloy

Re

Ω·cm2

R1

Ω·cm2

Q1

Ω-1·cm-2·sn1

R2

Ω·cm2

Q2

Ω-1·cm-2·sn2

508325.312.249×1067.041×10-665.602.633×10-6
606366.084.077×1066.094×10-713.697.406×10-6
702065.968.233×1056.094×10-654.697.573×10-6
表2  EIS拟合电路各元件参数
图7  5083、6063和7020 铝合金腐蚀产物XPS分析
图8  5083、6063和7020铝合金点蚀形貌及面扫描结果
图9  Fe-Si(Mn)-Al第二相的SEM像、表面EDS面扫描及SKPFM结果
图10  Fe-Si-Al第二相的SEM像、表面EDS面扫描及SKPFM结果
[1] Huang B Y, Li C G, Shi L K, et al. Non-Ferrous Metal Materials Manual (I) [M]. Beijing: Chemical Industry Press, 2009: 109
[1] (黄伯云, 李成功, 石开力等. 有色金属材料手册(上) [M]. 北京: 化学工业出版社, 2009: 109)
[2] Yasakau K A, Zheludkevich M L, Ferreira M G S. Intermetallic Matrix Composites: Properties and Applications [M]. Sawston, Cambridge: Woodhead Publishing, 2018: 425
[3] Liu Y J, Wang Z Y, Ke W. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2013, 23: 1208
[3] (刘艳洁, 王振尧, 柯 伟. 2024-T3铝合金在模拟海洋大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 1208)
[4] Xiao Y D, Wang G Y, Li X G. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 248
[4] (萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报, 2003, 23: 248)
[5] Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
[5] (王 力, 郭春云, 肖葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431)
[6] Grimm M, Lohmüller A, Singer R F, et al. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys [J]. Corros. Sci., 2019, 155: 195
[7] van Beek H J, Mittemeijer E J. Amorphous and crystalline oxides on aluminium [J]. Thin Solid Films, 1984, 122: 131
[8] Gao M, Sun Z H, Liu M, et al. Atmospheric corrosion behavior of 7B04 aluminum alloy in the presence of NaCl and SO2 [J]. Environ. Technol., 2016, 34(5): 9
[8] (高 蒙, 孙志华, 刘 明等. 7B04铝合金在NaCl沉积与SO2环境下的大气腐蚀行为 [J]. 环境技术, 2016, 34(5): 9)
[9] Zhou H R, Li X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film [J]. Equip. Environ. Eng., 2006, 3(1): 1
[9] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展 [J]. 装备环境工程, 2006, 3(1): 1)
[10] Fratila-Apachitei L E, Terryn H, Skeldon P, et al. In?uence of substrate microstructure on the growth of anodic oxide layers [J]. Electrochim. Acta, 2004, 49: 1127
[11] Wang B B, Wang Z Y, Cao G W, et al. Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China [J]. Acta Metall. Sin., 2014, 50: 49
[11] (王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为 [J]. 金属学报, 2014, 50: 49)
[12] Wei X, Dong C F, Chen Z H, et al. A DFT study of the adsorption of O2 and H2O on Al(111) surfaces [J]. RSC Adv., 2016, 6: 56303
[13] Man C, Dong C F, Xiao K, et al. The combined effect of chemical and structural factors on pitting corrosion induced by MnS-(Cr, Mn, Al)O duplex inclusions [J]. Corrosion, 2018, 74: 312
[14] Tanem B S, Svenningsen G, M?rdalen J. Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy [J]. Corros. Sci., 2005, 47: 1506
[15] Zheng C B, Li C L, Yi G, et al. Corrosion behavior of high-strength aluminum alloys 6061 and 7075 in simulated marine atmosphere [J]. Mater. Prot., 2014, 47(6): 38
[15] (郑传波, 李春岭, 益 帼等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47(6): 38)
[16] Suo X N, Guo C, Kong D C, et al. Corrosion behaviour of TiN and CrN coatings produced by magnetron sputtering process on aluminium alloy [J]. Int. J. Electrochem. Sci., 2019, 14: 826
[17] Chen M A, Ou Y C, Fu Y H, et al. Effect of friction stirred Al-Fe-Si particles in 6061 aluminum alloy on structure and corrosion performance of MAO coating [J]. Surf. Coat. Technol., 2016, 304: 85
[18] Man C, Dong C F, Cui Z Y, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH [J]. Appl. Surf. Sci., 2018, 427: 763
[19] Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[20] Chung I C, Chung C K, Su Y K. Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid [J]. Surf. Coat. Technol., 2017, 313: 299
[21] Nejadseyfi O, Shokuhfar A, Dabiri A, et al. Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy [J]. J. Alloys Compd., 2015, 648: 912
[22] de Miera M S, Curioni M, Skeldon P, et al. The behaviour of second phase particles during anodizing of aluminium alloys [J]. Corros. Sci., 2010, 52: 2489
[23] Huang L P, Chen K H, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2012, B177: 862
[24] Esfahani Z, Rahimi E, Sarvghad M, et al. Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint [J]. J. Alloys Compd., 2018, 744: 174
[25] Ornek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[4] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[5] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[8] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[9] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[10] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[11] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[14] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[15] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.