Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1046-1054    DOI: 10.11900/0412.1961.2013.00843
  论文 本期目录 | 过刊浏览 |
Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*
车欣1, 梁兴奎2, 陈丽丽3, 陈立佳1, 李锋1
1 沈阳工业大学材料科学与工程学院, 沈阳110870; 2 新东北电气集团(沈阳)高压开关有限公司, 沈阳110025; 3 沈阳晨光弗泰波纹管有限公司, 沈阳110141
MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY
CHE Xin1, LIANG Xingkui2, CHEN Lili3, CHEN Lijia1, LI Feng1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870; 2 New Northeast Electric (Shenyang) High Voltage Switchgear Co. Ltd, Shenyang 110025; 3 Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
全文: PDF(4169 KB)   HTML
摘要: 为了确定稀土元素Sc对T6态铸造Al-9.0%Si-4.0%Cu-0.4%Mg合金(质量分数)的低周疲劳行为的影响规律, 研究了T6态铸造Al-9.0%Si-4.0%Cu-0.4%Mg合金和Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc合金的低周疲劳行为. 结果表明, 在低的外加总应变幅下, Al-9.0%Si-4.0%Cu-0.4%Mg合金在整个疲劳变形期间均表现为循环应变硬化, Al-9.0%Si- 4.0%Cu-0.4%Mg-0.3%Sc合金在疲劳变形初期表现为循环应变硬化, 在疲劳变形后期则表现为循环稳定; 当外加总应变幅较高时, Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金均呈现循环应变硬化. Sc的加入可以有效地提高T6态Al-9.0%Si-4.0%Cu-0.4%Mg合金的循环变形抗力和低周疲劳寿命. 在较低的外加总应变幅下, T6态Al-9.0%Si- 4.0%Cu-0.4%Mg(-0.3%Sc)合金的循环变形机制为平面滑移, 当外加总应变幅较高时则为波状滑移机制.
关键词 Al-Si-Cu-Mg合金ScT6处理低周疲劳疲劳寿命循环应力响应循环变形机制    
Abstract:The Al-Si-Cu-Mg cast aluminum alloys have high mechanical properties and good cast performance. Due to their excellent comprehensive properties, the Al-Si-Cu-Mg cast aluminum alloys have wide application, and have become one of the most important structural materials applied in the equipment manufacturing industry. Actually, many key components in practical engineering application are often subjected to the alternating load, and thus the fatigue failure has become an important factor which concerns the safety and economy for those structures used in various engineering fields. Although some researches for the fatigue behavior of aluminum alloys have been performed, mainly focus on the regularity understanding. Especially, the influences of rare earth elements and heat-treat condition on the low-cycle fatigue behavior of aluminum alloys have not been comprehensively revealed. Obviously, the investigation concerning the microstructure and fatigue property of the Al-Si-Cu-Mg cast aluminum alloys can not only provide the theoretical basis for the development of new type cast aluminum alloys but also the reliable theoretical foundation for the safety design and reasonable use of these alloys. In order to determine the influence of rare earth element Sc on the low-cycle fatigue behavior of casting Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state, the cyclic stress response behavior, fatigue life behavior and cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) cast aluminum alloys with T6 treated states under low-cycle fatigue loading condition were investigated. The results show that at the low total strain amplitude, the Al-9.0%Si-4.0%Cu-0.4%Mg alloy exhibits the cyclic strain hardening during whole fatigue deformation, while the Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloys exhibit the cyclic strain hardening in the initial stage of fatigue deformation and then the stable cyclic stress response in the later stage of fatigue deformation. At the higher total strain amplitudes, the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys exhibit the cyclic strain hardening. The addition of Sc can effectively enhance the cyclic deformation resistance and prolong the fatigue lives of the Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state. At the lower total strain amplitudes, the cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys with T6 treated state is the plane slip, while at the higher total strain amplitudes, the cyclic deformation mechanism becomes the wavy slip.
Key wordsAl-Si-Cu-Mg alloy    Sc    T6 treatment    low-cycle fatigue    fatigue life    cyclic stress response    cyclic deformation mechanism
    
ZTFLH:  TG146.2  
基金资助:*辽宁省教育厅科学技术研究项目L2013056和沈阳市科技局科学技术研究项目F13-076-2-00资助
Corresponding author: Correspondent: CHEN Lijia, professor, Tel:(024)25494501, E-mail: chenlj-sut@163.com     E-mail: chenlj-sut@163.com
作者简介: 车欣, 男, 朝鲜族, 1981年生, 讲师

引用本文:

车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY. Acta Metall Sin, 2014, 50(9): 1046-1054.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2013.00843      或      https://www.ams.org.cn/CN/Y2014/V50/I9/1046

[1] Wang X, Chen G Q, Li B, Wu L M, Jiang D M. Rare Met, 2010; 29(1): 66
[2] Mo D F, He G Q, Hu Z F, Zhang W H. J Mater Eng, 2010; (7): 92 (莫德峰, 何国球, 胡正飞, 张卫华. 材料工程, 2010; (7): 92)
[3] Wang G Q, Bian X F, Wang W M, Zhang J Y. Mater Lett, 2003; 57: 4083
[4] Moizumi K, Mine K, Tezuka H, Sato T. Mater Sci Forum, 2002; 396-402: 1371
[5] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[6] Wang Q G, Caceres C H, Griffiths J R. Metall Mater Trans, 2003;34A: 2901
[7] Cheng Z Z, Xie C H, Zhu C X. Light Met, 2010; (7): 58 (陈振中, 解传浩, 朱成香. 轻金属, 2010; (7): 58 )
[8] Bray G H, Glazov M, Rioja R J, Li D, Gangloff R P. Int J Fatigue, 2001; 23: 265
[9] Manson S S. Exp Mech, 1965; 5: 193
[10] Nieslony A, Dsoki C E, Kaufmann H, Krug. Int J Fatigue, 2008; 30: 1967
[11] Miura Y, Joh C H, Katsube T. Mater Sci Forum, 2000; 331-337: 1031
[12] Zhou K, Li Y Q. Chin J Nonferrous Met, 1997; 7: 97 (周 昆, 李云卿. 中国有色金属学报, 1997; 7: 97)
[13] Kendig K L, Miracle D B. Acta Mater, 2002; 50: 4165
[14] Li F, Wang Y, Chen L J, Zheng L, Zhou J Y. J Mater Sci, 2005; 40: 1529
[15] Kendig K L, Miracle D B. Acta Mater, 2004; 50: 4165
[16] Sj?lander E, Seifeddine S. J Mater Process Technol, 2010; 210: 1249
[17] Kim M, Hong Y, Cho H. Met Mater Int, 2004; 10: 513
[18] Zhou M Z. PhD Dissertation, Central South University, Changsha, 2010 (周明哲. 中南大学博士学位论文, 长沙, 2010)
[19] Dvydov V G, Rostova T D, Zakharov V V, Filatov Y A, Yelagin V I. Mater Sci Eng, 2000; A280: 30
[20] Watanabe C, Jin C Y, Monzen R, Kitagawa K. Mater Sci Eng, 2004; A387-389: 552
[21] Lados D A, Apelian D. Mater Sci Eng, 2004; A385: 200
[22] Lee F T, Major J F, amuel F H. Metall Mater Trans, 1995; 26A: 1553
[23] Li M J, Hu H Y, Xing X S. Acta Phys Sin, 2003; 52: 2092 (李眉娟, 胡海云, 邢修三. 物理学报, 2003; 52: 2092 )
[24] Yin Z M, Pan Q L, Zhang Y H, Jiang F. Mater Sci Eng, 2000; A280: 151
[25] Saisrinadh K V, Singh V. Metall Mater Trans, 2007; 38A: 1868
[26] Chen L J, Wu W, Liaw P K. Acta Metall Sin, 2006; 42: 952 (陈立佳, 吴 崴, Liaw P K. 金属学报, 2006; 42: 952)
[27] Singh V, Sundararaman M, Chen W, Wahi R P. Metall Trans, 1991; 22A: 499
[1] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[2] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[3] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[4] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[5] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[6] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[7] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[8] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.
[9] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[10] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[11] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[12] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[13] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[14] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[15] 张思倩, 吴伟, 陈丽丽, 车欣, 陈立佳. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*[J]. 金属学报, 2014, 50(6): 700-706.