Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1153-1160    DOI: 10.3724/SP.J.1037.2010.00283
  论文 本期目录 | 过刊浏览 |
18Mn TRIP钢温变形过程中马氏体逆相变行为
鲁法云,杨平,孟利,毛卫民
北京科技大学材料科学与工程学院, 北京 100083
BEHAVIOR OF MARTENSITE REVERSE TRANSFORMATION IN A HIGH MANGANESE TRIP STEEL DURING WARM DEFORMATION
LU Fayun, YANG Ping, MENG Li, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

鲁法云 杨平 孟利 毛卫民. 18Mn TRIP钢温变形过程中马氏体逆相变行为[J]. 金属学报, 2010, 46(10): 1153-1160.
, , , . BEHAVIOR OF MARTENSITE REVERSE TRANSFORMATION IN A HIGH MANGANESE TRIP STEEL DURING WARM DEFORMATION[J]. Acta Metall Sin, 2010, 46(10): 1153-1160.

全文: PDF(2964 KB)  
摘要: 通过相变点测定、相图计算、组织观察、XRD分析及EBSD取向成像技术研究了室温下含两种马氏体及奥氏体的18Mn钢在100-500℃间进行温变形时的组织、相结构变化及马氏体逆相变行为. 结果表明, 在300℃以上压缩变形时, TRIP效应消失,马氏体减少, 出现逆相变; 形变加速了扩散型逆相变, bcc马氏体或铁素体以扩散方式转变成奥氏体, 奥氏体不需要重新形核; 形变使奥氏体出现机械稳定化并出现大尺寸的形变孪晶, 抑制了随后冷却过程中的马氏体相变; 压缩形变时,最后残留的马氏体多出现在{110} 和{100}取向的奥氏体晶粒中.bcc马氏体周围难以观察到hcp马氏体. 分析认为, hcp马氏体以切变方式逆相变.
关键词 18Mn钢 温变形 TRIP效应 马氏体逆相变    
Abstract:High manganese steels show significant potential for industrial application due to their remarkable TRIP/TWIP effects at room temperature. The study on the TRIP behavior during warm deformation is important in controlling microstructures and properties of high manganese steels. In this paper, the microstructures, phase structures and reverse transformation of martensites to austenite in a high manganese steel which is composed of two types of martensites and austenite were investigated under warm deformation (100—500℃) by means of the determination of transformation temperature, calculation of phase diagram, microstructure observation, XRD analysis and EBSD orientation imaging technique. Results show that during compression above 300 ℃, TRIP effect disappeared and reverse transformation from martensite to austenite was enhanced. The transformation from bcc martensite to austenite was determined to be diffusive and no nucleation of austenite was needed. The warm deformation of austenite leads to the formation of coarse deormation twins and the mechanical stabilization of austenite, which suppressed the subsequent martensitic transformation during quenching. The austeniic grains in which reverse martensitic transformation completed at the latest, show mainly {110} and {100} orientations. In addition, hcp martensite could hardly edetected around bcc martensite, and the transformation of hcp martensite into austenite is regarded to be reversible and diffusionless.
Key words18Mn steel    warm deformation    TRIP effect    reverse transformation of martensite
收稿日期: 2010-06-13     
ZTFLH: 

TG111.5,TG142.33

 
基金资助:

国家自然科学基金项目50771019和高等学校博士学科点专项科研基金项目20090006110013资助

作者简介: 鲁法云, 女, 1985年生, 博士生
[1] Zhang F C, Lei T Q. Wear, 1997;212: 195 [2] Gr?ssel O, Krüger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391 [3] Frommeryer G, Brüx U, Neumann P. ISIJ Int, 2003; 43: 438 [4] Curtze S, Kuokkala V-T, Hokka M, Peura P. Mater Sci Eng, 2009; A507: 124 [5] Byun T S, Hashimoto N, Farrell K. Acta Mater, 2004; 52: 3889 [6] Sawaguchi T, Bujoreanu L-G, Kikuchi T, Ogawa K, Koyamaa M, Murakamic M. Scr Mater, 2008; 59: 826 [7] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 87 [8] Stalder M, Vogel S, Bourke M A M, Maldonado J G, Thoma D J, Yuan V W. Mater Sci Eng, 2000; A280: 270 [9]Gauzzi F, Montanari R, Principi G, Tata M E. Mater Sci Eng, 2006; A438-440: 202 [10] Tavares S S M, Fruchart D, Miraglia S. J Alloys Compd, 2000; 307: 311 [11] Kundu S, Bhadeshia H K D H. Scr Mater, 2007; 57: 869 [12] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279 [13] Zhang M-X, Kelly P M, Gates J D. Mater Sci Eng,1999; A273-275: 251 [14] Gauzzi F, Montanari R. Mater Sci Eng, 1999; A273-275: 524 [15] Lee Se-J, Park Y-M, Lee Y-K. Mater Sci Eng, 2009; A515: 32 [16] Leem D-S, Lee Y-D, Jun J-H, Choi C-S. Scr Mater, 2001; 45: 767 [17] Gey N, Petit B, Humbert M. Metall Mater Trans, 2005; A36: 3291
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[3] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[4] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[5] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[6] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[7] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[8] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[9] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[10] 梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 基于软化机制的TC18钛合金本构关系研究*[J]. 金属学报, 2014, 50(7): 871-878.
[11] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[12] 朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
[13] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[14] 贾斌 彭艳. 铌微合金钢高温变形的本构关系[J]. 金属学报, 2011, 47(4): 507-512.
[15] 方轶琉 刘振宇 张维娜 王国栋 宋红梅 江来珠. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46(6): 641-646.