Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 700-706    DOI: 10.3724/SP.J.1037.2013.00781
  论文 本期目录 | 过刊浏览 |
热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*
张思倩1), 吴伟1), 陈丽丽2), 车欣1), 陈立佳1)
1) 沈阳工业大学材料科学与工程学院, 沈阳110870
2) 沈阳晨光弗泰波纹管有限公司, 沈阳110141
INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY
ZHANG Siqian 1), WU Wei 1), CHEN Lili 2), CHE Xin 1), CHEN Lijia 1)
1) School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2) Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
全文: PDF(3684 KB)   HTML
摘要: 

对热挤压、时效处理(T5态)及固溶+时效处理(T6态) Mg-7%Zn-0.6%Zr-0.5%Y合金(质量分数)分别进行了低周疲劳实验, 探讨了热处理对合金低周疲劳变形行为的影响. 结果表明: 时效处理和固溶+时效处理可提高热挤压Mg-7%Zn-0.6%Zr-0.5%Y合金的循环变形抗力; 时效处理降低了合金的疲劳寿命, 固溶+时效处理可以提高合金在较高外加总应变幅下的疲劳寿命, 但降低合金在较低外加总应变幅下的低周疲劳寿命; 不同状态合金的弹性应变幅和塑性应变幅与载荷反向周次的关系可分别用Basquin和Coffin-Manson公式来描述; 时效及固溶+时效处理过程中形成的长周期堆垛有序结构(LPSO相)是合金的循环变形抗力大幅提高的主要原因, 而疲劳变形过程中形成的孪晶可能是时效态合金疲劳寿命降低的原因.

关键词 镁合金低周疲劳循环变形热处理    
Abstract:The low-cycle fatigue tests have been conducted for the Mg-7%Zn-0.6%Zr-0.5%Y alloys (mass fraction) subjected to extrusion, aging (T5) and solution plus aging (T6) treatment, respectively. The influence of heat treatment on the fatigue deformation behavior of the alloy has also been systematically investigated. The results show that T5 and T6 treatment can improve the cyclic deformation resistance of Mg-7%Zn-0.6%Zr-0.5%Y alloys. T5 treatment can reduce the fatigue life of the alloy. However, T6 treatment can improve the fatigue life at high total strain amplitudes, and reduce the fatigue life at low total strain amplitudes. The relationship between elastic strain amplitude, plastic strain amplitude and reversals to failure of the alloys can be described by Basquin and Coffin-Manson equations, respectively. For the alloys subjected to both T5 and T6 treatments, the increase in the cyclic deformation resistance is mainly due to the formation of long period stacking ordered (LPSO) phase. The twins formed during the fatigue deformation may be responsible for the decrease in the fatigue life of the alloy subjected to T5 treatment.
Key wordsmagnesium alloy    low-cycle fatigue    cyclic     deformation    heat treatment
收稿日期: 2013-12-02     
ZTFLH:  TG115.5  
Corresponding author: ZHANG Siqian, lecturer, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn   
作者简介: 张思倩, 女, 1982 年生, 讲师

引用本文:

张思倩, 吴伟, 陈丽丽, 车欣, 陈立佳. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*[J]. 金属学报, 2014, 50(6): 700-706.
ZHANG Siqian, WU Wei, CHEN Lili, CHE Xin, CHEN Lijia. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY. Acta Metall Sin, 2014, 50(6): 700-706.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00781      或      https://www.ams.org.cn/CN/Y2014/V50/I6/700

[1] Avedsain M M, Baker H. Magnesium and Magnesium Alloys. Materials Park, Ohio: ASM International, 1999: 7
[2] Polmear I J. Mater Sci Technol, 1994; 10: 1
[3] Nishikawa Y. Funct Mater, 1999; 19(6): 21
[4] Horikir H, Kato A, Inoue A, Masumoto T. Mater Sci Eng, 1994; A179: 702
[5] Lee S, Lee S H, Kim D H. Metall Mater Trans, 1998; 29A: 1221
[6] Payne R J M, Bailey N. J Inst Met, 1960; 88: 417
[7] Unsworth W. Int J Mater Prod Technol, 1989; 4: 1359
[8] Drits M E, Sviderkaya Z A, Rokhlin L L, Nikitina N I. Met Sci Heat Treat, 1979; 21: 887
[9] Zhao H D, Qin G W, Ren Y P, Pei W L, Chen D, Guo Y. J Alloys Compd, 2011; 509: 627
[10] Wang J, Zhang D P, Fang D Q, Lu H Y, Tang D X, Zhang J H, Meng J. J Alloys Compd, 2008; 454: 194
[11] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795
[12] Xu D K, Tang W N, Liu L, Xu Y B, Han E H. J Alloys Compd, 2007; 432: 129
[13] Coffin L F. Trans Am Soc Mech Eng, 1954; 76: 931
[14] Coffin L F. Met Trans, 1972; 3: 1777
[15] Basquin O H. Proc Am Soc Test Mater, 1990; 10: 626
[16] Suresh S, translated by Wang Z G. Fatigue of Materials. Beijing: National Defence Industry Press, 1999: 158
(Suresh S 著, 王中光 译. 材料的疲劳. 北京: 国防工业出版社, 1999: 158)
[17] Eliezer A, Gutman E M, Abramov E, Unigovski Y. J Light Met, 2001; 1: 179
[18] Hilpert M, Wagner L. J Mater Eng Perform, 2000; 9: 402
[19] Xu D K, Liu L, Xu Y B, Han E H. J Alloys Compd, 2008; 454: 123
[20] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Metall Trans, 2001; 42: 1172
[21] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899
[22] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172
[23] Hagihara K, Yokotani N, Umakoshi Y. Intermetallics, 2010; 18: 267
[24] Yang X, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[25] Tome C N, Agnew S R, Blumenthal W R, Bourke M A M, Kaschner G C, Rangaswamy P. Mater Sci Forum, 2003; 408-412: 263
[26] Christian J W, Mahajant S. Prog Mater Sci, 1995; 39: 1
[27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Mater Sci Eng, 2007; 445-446: 302
[28] Jain A, Duygulu O, Brown D W, Tome C N, Agnew S R. Mater Sci Eng, 2008; 486: 545
[1] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[2] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[3] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[4] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[5] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[6] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[7] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[8] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[10] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[11] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[12] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[13] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[14] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[15] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.