Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 700-706    DOI: 10.3724/SP.J.1037.2013.00781
  本期目录 | 过刊浏览 |
热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*
张思倩1(), 吴伟1, 陈丽丽2, 车欣1, 陈立佳1
1 沈阳工业大学材料科学与工程学院, 沈阳 110870
2 沈阳晨光弗泰波纹管有限公司, 沈阳 110141
INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY
ZHANG Siqian1(), WU Wei1, CHEN Lili2, CHE Xin1, CHEN Lijia1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
引用本文:

张思倩, 吴伟, 陈丽丽, 车欣, 陈立佳. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*[J]. 金属学报, 2014, 50(6): 700-706.
Siqian ZHANG, Wei WU, Lili CHEN, Xin CHE, Lijia CHEN. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY[J]. Acta Metall Sin, 2014, 50(6): 700-706.

全文: PDF(3684 KB)   HTML
摘要: 

对热挤压、时效处理(T5态)及固溶+时效处理(T6态) Mg-7%Zn-0.6%Zr-0.5%Y合金(质量分数)分别进行了低周疲劳实验, 探讨了热处理对合金低周疲劳变形行为的影响. 结果表明: 时效处理和固溶+时效处理可提高热挤压Mg-7%Zn-0.6%Zr-0.5%Y合金的循环变形抗力; 时效处理降低了合金的疲劳寿命, 固溶+时效处理可以提高合金在较高外加总应变幅下的疲劳寿命, 但降低合金在较低外加总应变幅下的低周疲劳寿命; 不同状态合金的弹性应变幅和塑性应变幅与载荷反向周次的关系可分别用Basquin和Coffin-Manson公式来描述; 时效及固溶+时效处理过程中形成的长周期堆垛有序结构(LPSO相)是合金的循环变形抗力大幅提高的主要原因, 而疲劳变形过程中形成的孪晶可能是时效态合金疲劳寿命降低的原因.

关键词 镁合金低周疲劳循环变形热处理    
Abstract

The low-cycle fatigue tests have been conducted for the Mg-7%Zn-0.6%Zr-0.5%Y alloys (mass fraction) subjected to extrusion, aging (T5) and solution plus aging (T6) treatment, respectively. The influence of heat treatment on the fatigue deformation behavior of the alloy has also been systematically investigated. The results show that T5 and T6 treatment can improve the cyclic deformation resistance of Mg-7%Zn-0.6%Zr-0.5%Y alloys. T5 treatment can reduce the fatigue life of the alloy. However, T6 treatment can improve the fatigue life at high total strain amplitudes, and reduce the fatigue life at low total strain amplitudes. The relationship between elastic strain amplitude, plastic strain amplitude and reversals to failure of the alloys can be described by Basquin and Coffin-Manson equations, respectively. For the alloys subjected to both T5 and T6 treatments, the increase in the cyclic deformation resistance is mainly due to the formation of long period stacking ordered (LPSO) phase. The twins formed during the fatigue deformation may be responsible for the decrease in the fatigue life of the alloy subjected to T5 treatment.

Key wordsmagnesium alloy    low-cycle fatigue    cyclic deformation    heat treatment
收稿日期: 2013-12-02     
ZTFLH:  TG115.5  
图1  不同状态Mg-7%Zn-0.6%Zr-0.5%Y合金在不同外加总应变幅下的循环应力幅
图2  不同状态Mg-7%Zn-0.6%Zr -0.5%Y合金的总应变幅-疲劳寿命曲线
图3  Mg-7%Zn-0.6%Zr-0.5%Y合金的应变幅-载荷反向周次关系曲线
图4  Mg-7%Zn-0.6%Zr-0.5%Y合金的循环应力-应变曲线
Alloy state σ'f/ MPa b ε'f/ % c K'/ MPa n'
As-extruded 779.30 -0.17453 29.66 -0.72918 714.96 0.21144
T5 1452.35 -0.24987 43.58 -0.88045 853.00 0.20561
T6 1028.05 -0.22335 67.95 -0.83630 508.31 0.19241
表1  不同状态Mg-7%Zn-0.6%Zr-0.5%Y合金的应变疲劳参数
图5  不同状态Mg-7%Zn-0.6%Zr-0.5%Y合金微观组织
图6  T5 态Mg-7%Zn-0.6%Zr-0.5%Y 合金微观组织(Dεt/2=1.0%)
[1] Avedsain M M, Baker H. Magnesium and Magnesium Alloys. Materials Park, Ohio: ASM International, 1999: 7
[2] Polmear I J. Mater Sci Technol, 1994; 10: 1
[3] Nishikawa Y. Funct Mater, 1999; 19(6): 21
[4] Horikir H, Kato A, Inoue A, Masumoto T. Mater Sci Eng, 1994; A179: 702
[5] Lee S, Lee S H, Kim D H. Metall Mater Trans, 1998; 29A: 1221
[6] Payne R J M, Bailey N. J Inst Met, 1960; 88: 417
[7] Unsworth W. Int J Mater Prod Technol, 1989; 4: 1359
[8] Drits M E, Sviderkaya Z A, Rokhlin L L, Nikitina N I. Met Sci Heat Treat, 1979; 21: 887
[9] Zhao H D, Qin G W, Ren Y P, Pei W L, Chen D, Guo Y. J Alloys Compd, 2011; 509: 627
[10] Wang J, Zhang D P, Fang D Q, Lu H Y, Tang D X, Zhang J H, Meng J. J Alloys Compd, 2008; 454: 194
[11] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795
[12] Xu D K, Tang W N, Liu L, Xu Y B, Han E H. J Alloys Compd, 2007; 432: 129
[13] Coffin L F. Trans Am Soc Mech Eng, 1954; 76: 931
[14] Coffin L F. Met Trans, 1972; 3: 1777
[15] Basquin O H. Proc Am Soc Test Mater, 1990; 10: 626
[16] Suresh S, translated by Wang Z G. Fatigue of Materials. Beijing: National Defence Industry Press, 1999: 158
[16] (Suresh S 著,王中光 译. 材料的疲劳. 北京: 国防工业出版社, 1999: 158)
[17] Eliezer A, Gutman E M, Abramov E, Unigovski Y. J Light Met, 2001; 1: 179
[18] Hilpert M, Wagner L. J Mater Eng Perform, 2000; 9: 402
[19] Xu D K, Liu L, Xu Y B, Han E H. J Alloys Compd, 2008; 454: 123
[20] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Metall Trans, 2001; 42: 1172
[21] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899
[22] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172
[23] Hagihara K, Yokotani N, Umakoshi Y. Intermetallics, 2010; 18: 267
[24] Yang X, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[25] Tome C N, Agnew S R, Blumenthal W R, Bourke M A M, Kaschner G C, Rangaswamy P. Mater Sci Forum, 2003; 408-412: 263
[26] Christian J W, Mahajant S. Prog Mater Sci, 1995; 39: 1
[27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Mater Sci Eng, 2007; 445-446: 302
[28] Jain A, Duygulu O, Brown D W, Tome C N, Agnew S R. Mater Sci Eng, 2008; 486: 545
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[13] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[14] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[15] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.