|
|
高硬导电Cu-Ni-Si合金成分规律 |
李冬梅1,2,姜贝贝1,李晓娜1,王清1,董闯1( ) |
1. 大连理工大学材料科学与工程学院三束材料改性教育部重点实验室 大连 116024 2. 内蒙古民族大学机械工程学院 通辽 028000 |
|
Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys |
LI Dongmei1,2,JIANG Beibei1,LI Xiaona1,WANG Qing1,DONG Chuang1( ) |
1. Key Lab of Materials Modification by Laser, Iron and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2. School of Mechanical Engineering, Inner Mongolia University For Nationalities, Tongliao 028000, China |
引用本文:
李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
Dongmei LI,
Beibei JIANG,
Xiaona LI,
Qing WANG,
Chuang DONG.
Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. Acta Metall Sin, 2019, 55(10): 1291-1301.
[1] | Li S H, Li Z, Lei Q ,et al. Microstructure and properties of superhigh strength Cu-Ni-(Al)-Si Alloy [J]. Rare Met. Mater. Eng., 2015, 44: 1427 | [1] | (黎三华, 李 周, 雷 前等. 高强度Cu-Ni-(Al)-Si合金的组织和性能 [J]. 稀有金属材料与工程, 2015, 44: 1427) | [2] | Roy D, Atwater M A, Youssef K ,et al. Studies on thermal stability, mechanical and electrical properties of nano crystalline Cu99.5Zr0.5 alloy [J]. J. Alloys Compd., 2013, 558: 44 | [3] | Azimi M, Akbari G H. Characterization of nano-structured Cu-6 wt.%Zr alloy produced by mechanical alloying and annealing methods [J]. J. Alloys Compd., 2013, 555: 112 | [4] | Suzuki S, Shibutani N, Mimura K,et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling [J]. J. Alloys Compd., 2006, 417: 116 | [5] | Huang B Y, Li C G, Shi L K ,et al. Nonferrous Materials Manual [The First Volume] [M]. Beijing: Chemical Industry Press, 2009: 256 | [5] | (黄伯云, 李成功, 石力开等. 有色金属材料手册[上] [M]. 北京: 化学工业出版社, 2009: 256) | [6] | Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. J. Mater. Sci., 1994, 29: 218 | [7] | Lei Q, Li Z, Pan Z Y ,et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006 | [8] | Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys [J]. Mater. Sci. Eng., 2013, A572: 65 | [9] | Hume-Rothery W, Raynor G V. The equilibrium and lattice-spacing relations in the system magnesium-cadmium [J]. Proc. Roy. Soc., 1940, 174A: 471 | [10] | Bagariatskii I A, Nosova G I, Tagunova T V. Factors in the formation of metastable phases in titanium-base alloys [J]. Sov. Phys. Dokl., 1958, 3: 1014 | [11] | Hall E O, Algie S H. The sigma phase [J]. Metall. Rev., 1966, 11: 61 | [12] | Morinaga M, Yukawa N, Adachi H. Alloying effect on the electronic structure of BCC Fe [J]. J. Phys., 1985, 15F: 1071 | [13] | Yu R H. The empirical electron theory of solids and molecules [J]. Chin. Sci. Bull., 1978, 23: 217 | [14] | Bania P J. Beta Titanium Alloys in the 1990's [M]. Warrendale, PA: TMS, 1993: 147 | [15] | Zeng W D, Shu Y, Zhou Y G. Artificial neural network model for the prediction of mechanical properties of Ti-10V-2Fe-3Al titanium alloy [J]. Rare Met. Mater. Eng., 2004, 33: 1041 | [16] | Reddy N S, Lee Y H, Park C H, et al. Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed α+β microstructure by artificial neural networks [J]. Mater. Sci. Eng., 2008, A492: 276 | [17] | Nunes R, Adams J H, Ammons M, et al. ASM Handbook (Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials) [M]. Geauga: ASM International Press, 1990: 760 | [18] | Wang L, Sun S Y, Fu X Q, et al. Microstructure and properties of Cu-Ni-Si based alloys for lead frame [J]. J.Univ Southeast. (Nat. Sci. Ed.), 2005, 35: 729 | [18] | (汪 黎, 孙善扬, 付小琴等. Cu-Ni-Si基引线框架合金的组织和性能 [J]. 东南大学学报(自然科学版), 2005, 35: 729) | [19] | Fan L, Liu P, Jia S G, et al. Progress in copper alloys for lead frame research [J]. Dev. Appl. Mater., 2008, 23(4): 101 | [19] | (范 莉, 刘 平, 贾淑果等. 铜基引线框架材料研究进展 [J]. 材料开发与应用, 2008, 23(4): 101) | [20] | Zhang Y, Lu M M, Hu Y Y, et al. Development and study of Cu-Ni-Si alloy for lead frame [J]. Shanghai Nonferrous Met., 2014, 35: 177 | [20] | (张 英, 陆萌萌, 胡艳艳等. 引线框架用Cu-Ni-Si合金的发展及研究现状 [J]. 上海有色金属, 2014, 35: 177) | [21] | Novelty M L. Electronic Materials Handbook: Packaging, Vol.1 [M]. Novelty: ASM International, 1989: 1126 | [22] | Furukawa Electric. High Performance Copper Alloys for Leadframe [EB/OL] http://www.furukawa.co.jp/product/catalogue/pdf/ leadframe_s133.pdf | [23] | Tummala R R, Rymaszewski E J, Klopfenstein A G. Microelectronics Packaging Handbook: Semiconductor Packaging (PartⅡ) [M]. Boston, Dordrecht, London: Kluwer Academic Publishers, 2004: 428 | [24] | Mitsubishi Shindoh Co., Ltd. MAX Series [EB/OL]. http://www.mitsubishi-shindoh.com/en/products/material/max.html | [25] | Industries PMX, Inc.Alloy C7026[EB/OL]. http://www.ipmx.com/high/pdf/C7026.pdf | [26] | Industries PMX, Inc. Alloy C19010 [EB/OL]. http://www.ipmx.com/high/pdf/19010blue.pdf | [27] | Zhang X N, Wang Q, Chen B,et al. Influence of the amount of solute elements (Ni, Sn) on the electrical conductivity of Cu-Ni-Sn alloys [J]. Mater. Rev., 2015, 29(18): 13 | [27] | (张显娜, 王 清, 陈 勃等. 溶质元素(Ni, Sn)总量对Cu-Ni-Sn合金导电性能的影响 [J]. 材料导报, 2015, 29(18): 13) | [28] | Dong C, Wang Q, Qiang J B ,et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40DR273 | [29] | Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293 | [29] | (董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293) | [30] | Hong H L, Wang Q, Dong C, et al. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys [J]. Sci. Rep., 2014, 4: 7065 | [31] | Pang C, Wang Q, Zhang R Q ,et al. β Zr-Nb-Ti-Mo-Sn alloys with low Young?s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model [J]. Mater. Sci. Eng., 2015, A626: 369 | [32] | Wang Z R, Qiang J B, Wang Y M ,et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366 | [33] | Wang Q, Ma Y, Jiang B B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties [J]. Scr. Mater., 2016, 120: 85 | [34] | Li D M, Wang Q, Jiang B B, et al. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach [J]. Prog. Nat. Sci., 2017, 27: 467 | [35] | Zhang Y, Wang Q, Dong H G ,et al. Nickel-based single-crystal superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) designed by cluster-plus-glue-atom model and their 1000 h long-term ageing behavior at 900 ℃ [J]. Acta Metall. Sin., 2018, 54: 591 | [35] | (张 宇, 王 清, 董红刚等. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为 [J]. 金属学报, 2018, 54: 591) | [36] | Geng Y X, Wang Y M, Qiang J B ,et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459 | [36] | (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459) | [37] | Yamamoto K, Sasaki H, Odasin M ,et al. Development and characteristics of high strength lead frame material HCL 305 [J]. J.Jpn. Copper Brass Res. Assoc., 1999, 38: 204 | [38] | Jia L, Xie H, Lu Z L ,et al. Research on the optimization of Ni/Si atomic ratio for Cu-Ni-Si alloys with high strength and high electrical conductivity [J]. Mater. Sci. Forum, 2011, 695: 344 | [39] | Wang H S, Chen H G, Gu J W ,et al. Improvement in strength and thermal conductivity of powder metallurgy produced Cu-Ni-Si-Cr alloy by adjusting Ni/Si weight ratio and hot forging [J]. J. Alloys Compd., 2015, 633: 59 | [40] | Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817 | [41] | Lee E, Euh K, Han S Z ,et al. Tensile and electrical properties of direct aged Cu-Ni-Si-x%Ti Alloys [J]. Met. Mater. Int., 2013, 19: 183 | [42] | Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of super high strength Cu-5.2Ni-1.2Si alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1821 | [42] | (潘志勇, 汪明朴, 李 周等. 超高强度Cu-5.2Ni-1.2Si合金的形变热处理 [J]. 中国有色金属学报, 2007, 17: 1821) | [43] | Pan Z Y, Wang M P, Li Z, et al. Effect of trace elments on properties of Cu-Ni-Si alloy [J]. Mater. Rev., 2007, 21: 86 | [43] | (潘志勇, 汪明朴, 李 周等. 添加微量元素对Cu-Ni-Si合金性能的影响 [J]. 材料导报, 2007, 21: 86) | [44] | Wang D F, Kang B X, Liu P ,et al. Development and application of materials [J]. Dev. Appl. Mater., 2003, 18(2): 4 | [44] | (王东锋, 康布熙, 刘 平等. Cu-Ni-Si合金的时效与析出研究 [J]. 材料开发与应用, 2003, 18(2): 4) | [45] | Ren W, Jia S G, Liu P, et al. Effect of solution temperature on properties of Cu-Ni-Si alloy [J]. Hot Work. Technol., 2009, 38(8): 121 | [45] | (任 伟, 贾淑果, 刘 平等. 固溶温度对Cu-Ni-Si合金性能的影响 [J]. 热加工工艺, 2009, 38(8): 121) | [46] | Gaskell P H. On the density of transition metal-metalloid glasses [J]. Acta Metall., 1981, 29: 1203 | [47] | Zhao D M, Dong Q M, Liu P ,et al. Structure and strength of the age hardened Cu-Ni-Si alloy [J]. Mater. Chem. Phys., 2003, 79: 81 | [48] | Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 421 | [48] | (胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 421) | [49] | Tian S. Material Physical Properties [M]. Beijing: Beihang University Press, 2001: 39 | [49] | (田 莳. 材料物理性能 [M]. 北京: 北京航空航天大学出版社, 2001: 39) | [50] | Xiao X P, Yi Z Y, Chen T T,et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy [J]. J. Alloys Compd., 2016, 660: 178 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|