Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1302-1310    DOI: 10.11900/0412.1961.2019.00054
  本期目录 | 过刊浏览 |
电化学脱合金制备纳米多孔Ag及其甲醛检测性能
杨玉林1,穆张岩1,范铮1,淡振华1,2(),王莹2,常辉1
1. 南京工业大学材料科学与工程学院 南京 210009
2. 鞍山钢铁集团公司海洋装备用金属材料及其应用国家重点实验室 鞍山 114021
Nanoporous Silver via Electrochemical Dealloying and Its Superior Detection Sensitivity to Formaldehyde
YANG Yulin1,MU Zhangyan1,FAN Zheng1,DAN Zhenhua1,2(),WANG Ying2,CHANG Hui1
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
2. State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Iron and Steel Group Corporation, Anshan 114021, China
引用本文:

杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
Yulin YANG, Zhangyan MU, Zheng FAN, Zhenhua DAN, Ying WANG, Hui CHANG. Nanoporous Silver via Electrochemical Dealloying and Its Superior Detection Sensitivity to Formaldehyde[J]. Acta Metall Sin, 2019, 55(10): 1302-1310.

全文: PDF(16041 KB)   HTML
摘要: 

以Ag30Zn70合金为原料,通过调控脱合金电势及电流的2种电化学脱合金方法制备纳米多孔Ag材料。结果表明,脱合金电位或电流对纳米多孔Ag的成分、结构及孔径尺寸有重要影响。通过在2.5 mA/cm2电流密度下脱合金处理6000 s后可获得孔径约为80 nm的双连续纳米多孔Ag结构。循环伏安实验结果表明,纳米多孔Ag在0.5 mol/L的KOH溶液中对甲醛有良好的催化和检测性能,归因于纳米多孔结构中较优的纳米多孔孔径和Ag韧带的尺寸匹配。具有更小尺寸孔径的纳米多孔Ag有着更高的甲醛催化和检测性能。孔径约为80 nm的纳米多孔Ag在10~100 mmol/L浓度范围内的甲醛检测灵敏度达到0.22 mA·cm-2·(mmol·L-1)-1;在含有100 mmol/L HCHO的0.5 mol/L KOH溶液中的催化峰值电流密度达到25.0 mA/cm2

关键词 电化学脱合金法纳米多孔Ag甲醛检测循环伏安法    
Abstract

Nanoporous silver (NPS) with high specific surface area has a great potential application in efficient formaldehyde detection. In this work, NPS was prepared by potentiostatic or galvanostatic electrochemical dealloying of Ag30Zn70 precursor alloys. The results reveal that applied potential or current has a significant influence on the composition, morphology and nanoporous structure of NPS. A bi-continuous NPS with an average pore size of 80 nm was obtained by electrochemical dealloying in 0.1 mol/L HCl solution at a constant current density of 2.5 mA/cm2 for 6000 s. The cyclic voltammetry experiment results showed that NPS has a superior formaldehyde catalysis and detection abilities in 0.5 mol/L KOH solution due to the optimal combination of nanopores and Ag ligaments in nanoporous structure. The higher formaldehyde catalysis and detection abilities were exhibited at the NPS with smaller nanopores. The detection sensitivity of formaldehyde in NPS with the pore size of 80 nm was 0.22 mA·cm-2·(mmol·L-1)-1 in the concentration range of 10~100 mmol/L, and the peak current density was 25.0 mA/cm2 in 0.5 mol/L KOH solution with 100 mmol/L HCHO.

Key wordselectrochemical dealloying    nanoporous silver    formaldehyde detection    cyclic voltammetry
收稿日期: 2019-02-28     
ZTFLH:  TG146  
基金资助:国防基础科研计划项目(JCKY08414C020);江苏高校品牌专业建设工程项目(PPZY2015B128);海洋装备用金属材料及其应用国家重点实验室开放基金项目(HG-SKL(2018)06)
作者简介: 杨玉林,男,1992年生,硕士生
图1  Ag30Zn70合金在含有1 g/L PVP的0.1 mol/L HCl溶液中,不同电位下电化学脱合金响应电流密度随时间变化图
图2  Ag30Zn70原始合金及其在不同电位下电化学脱合金后的XRD谱
图3  Ag30Zn70合金不同电位下电化学脱合金后微观组织的SEM像
图4  Ag30Zn70合金在0.1 mol/L的HCl溶液中不同电流密度下电化学脱合金电位随时间变化图
图5  Ag30Zn70合金在不同电流密度下电化学脱合金后的XRD谱
图6  Ag30Zn70合金在不同电流密度下电化学脱合金后微观组织的SEM像
图7  纳米多孔Ag和Ag30Zn70原始合金在含有50 mmol/L HCHO的0.5 mol/L KOH溶液中的CV曲线
图8  NPS-3在含有50 mmol/L HCHO的0.5 mol/L KOH溶液中不同扫描速率下的CV曲线,及甲醛氧化的峰值电流密度与扫描速率平方根的线性关系
图9  NPS-3在含有50 mmol/L HCHO的0.5 mol/L KOH溶液中不同循环次数的CV曲线,及甲醛氧化的峰值电流密度与循环次数的关系
图10  NPS-2和NPS-3在含有10、30、50、80及100 mmol/L HCHO的0.5 mol/L KOH溶液中的CV曲线,及甲醛氧化的峰值电流密度与甲醛浓度(CHCHO)的线性关系
[1] Xu C X, Xu X H, Su J X ,et al. Research on unsupported nanoporous gold catalyst for CO oxidation [J]. J. Catal., 2007, 252: 243
[2] Zeis R, Lei T, Sieradzki K, et al. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold [J]. J. Catal., 2008, 253: 132
[3] Jin Y, Li R, Zhang T. Formation of nanoporous silver by dealloying Ca-Ag metallic glasses in water [J]. Intermetallics, 2015, 67: 166
[4] Qiu H J, Xue L Y, Ji G L, et al. Enzyme-modified nanoporous gold-based electrochemical biosensors [J]. Biosens. Bioelectron., 2009, 24: 3014
[5] Chen Y. The preparation and electrocatalytic properties of nanoporous silver [D]. Guilin: Guangxi Normal University, 2012
[5] (陈 颖. 纳米多孔银的制备及电催化性能研究 [D]. 桂林: 广西师范大学, 2012)
[6] Li R, Liu X J, Wang H ,et al. Development of electrochemical supercapacitors with uniform nanoporous silver network [J]. Electrochim. Acta, 2015, 182: 224
[7] Dan Z H, Qin F X, Sugawara Y, et al. Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions [J]. Intermetallics, 2012, 29: 14
[8] Dan Z H, Qin F X, Yamaura S I ,et al. Refinement of nanoporous copper by dealloying MgCuY amorphous alloys in sulfuric acids containing polyvinylpyrrolidone [J].J. Electrochem. Soc., 2014, 161: C120
[9] Qin F X, Dan Z H, Hara N ,et al. Selective dissolution of an amorphous Mg65Cu25Y10 alloy in organic acids and dilute HCl solution [J]. Mater. Chem. Phys., 2016, 179: 27
[10] Dan Z H, Qin F X, Wada T, et al. Nanoporous palladium fabricated from an amorphous Pd42.5Cu30Ni7.5P20 precursor and its ethanol electro-oxidation performance [J]. Electrochim. Acta, 2013, 108: 512
[11] Zhang C, Sun J Z, Xu J L ,et al. Formation and microstructure of nanoporous silver by dealloying rapidly solidified Zn-Ag alloys [J]. Electrochim. Acta, 2012, 63: 302
[12] Forty A J, Durkin P. A micromorphological study of the dissolution of silver-gold alloys in nitric acid [J]. Philos. Mag., 1980, 42A: 295
[13] Erlebacher J, Aziz M J, Karma A ,et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
[14] Song T T, Gao Y L, Zhang Z H ,et al. Influence of magnetic field on dealloying of Al-25Ag alloy and formation of nanoporous Ag [J]. CrystEngComm, 2012, 14: 3694
[15] Ji H, Wang X G, Zhao C C ,et al. Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping [J]. CrystEngComm, 2011, 13: 2617
[16] Zhang M, Junior A M J, Pang S J, et al. Fabrication of nanoporous silver with open pores [J]. Scr. Mater., 2015, 100: 21
[17] Li Z Q, Wang X M, Lu X. Refinement of nanoporous silver by adding surfactant to the electrolyte [J]. ECS Electrochem. Lett., 2014, 3: C13
[18] Cui Y L. Improving of the method of formaldehyde manual titration [J]. Chem. Eng. Des. Commun., 2014, 40(3): 51
[18] (崔永乐. 手动滴定测定甲醛方法的改进 [J]. 化学设计通讯, 2014, 40(3): 51)
[19] Yao J D, Sun D, Zhong C H, et al. Determination of formaldehyde content in soil by acetylacetone spectrophotometry [J]. Chem. Anal. Meterage, 2017, 26(1): 85
[19] (姚洁丹, 孙 丹, 钟灿红等. 乙酰丙酮分光光度法测定土壤中甲醛 [J]. 化学分析计量, 2017, 26(1): 85)
[20] Gao M H, Zhou S L, Yang Z Y ,et al. Spectrophotometric determination of formaldehyde in water sample with amino acid-acetylacetone [J]. Phys. Test. Chem. Anal., 2014, 50B: 50
[20] (高明慧, 周仕林, 杨卓圆等. 氨基酸-乙酰丙酮分光光度法测定水样中甲醛 [J]. 理化检验, 2014, 50B: 50)
[21] Dai Z R, Lin M F, Zhang C X. Rapid detection of formaldehyde content in fresh milk by gas chromatography [J]. Food Res. Dev., 2015, 36(24): 154
[21] (戴梓茹, 林美芳, 张晨晓. 气相色谱法快速测定鲜牛乳中的甲醛含量 [J]. 食品研究与开发, 2015, 36(24): 154)
[22] Xu J L, Wang Y, Zhang Z H. Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions [J]. J. Phys. Chem., 2012, 116C: 5689
[23] Zhang Q, Wang X G, Qi Z ,et al. A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution [J]. Electrochim. Acta, 2009, 54: 6190
[24] Fu C Q, Xu L J, Dan Z H, et al. Annealing effect of amorphous Fe-Si-B-P-Cu precursors on microstructural evolution and redox behavior of nanoporous counterparts [J]. J. Alloys Compd., 2017, 726: 810
[25] Zhang Q, Zhang Z H. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution [J]. Phys. Chem. Chem. Phys., 2010, 12: 1453
[26] Dursun A, Pugh D V, Corcoran S G. Dealloying of Ag-Au alloys in halide-containing electrolytes: Affect on critical potential and pore size [J]. J. Electrochem. Soc., 2003, 150: B355
[27] Yang C L, Xiang Y, Yang S C ,et al. Nanoporous gold by dealloying and its electrocatalytic oxidation abilities towards glucose [J]. Rare Met. Mater. Eng., 2014, 43: 230
[27] (杨春雷, 项 桦, 杨圣晨等. 纳米多孔金的制备及其对葡萄糖催化性能研究 [J]. 稀有金属材料与工程, 2014, 43: 230)
[28] Sun Y, Ye J, Shan Z W ,et al. The mechanical behavior of nanoporous gold thin films [J]. JOM, 2007, 59(9): 54.
[29] Bai L. Study on the electrocatalysis properties of nanoporous silver [D]. Dalian: Dalian Jiaotong University, 2015
[29] (白 璐. 多孔银的电催化性能研究[D]. 大连: 大连交通大学, 2015)
[30] Zhao Y, Qin S J, Li Y ,et al. Electrodeposition of dendritic Pd nanoarchitectures on n-GaN(0001): Nucleation and electrocatalysis for direct formic acid fuel cells [J]. Electrochim. Acta, 2014, 145: 148
[31] Duan D H, Liu H H, You X, et al. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells [J]. J. Power Sources, 2015, 293: 292
[32] Yu Y N, Jia M Z, Tian H F ,et al. The fabrication of silver ion implantation-modified electrode and its application in electrocatalytic oxidation of formaldehyde [J]. J. Power Sources, 2014, 267: 123
[1] 王旭; 翟玉春; 谢宏伟 . 熔盐电解法制备CaB6及其表征[J]. 金属学报, 2008, 44(10): 1243-1246 .
[2] 印仁和; 董晓明; 王慧娟; 戴迎春; 张新胜; 钱余海 . 电镀锌钢板上2--Vpy阴极电聚合及其腐蚀行为的研究[J]. 金属学报, 2005, 41(10): 1111-1115 .
[3] 印仁和; 赵亚萍; 戴迎春; 张新胜 . 水杨酸钠对电镀锌钢板上电聚合吡咯的作用[J]. 金属学报, 2004, 40(2): 168-172 .
[4] 杜森林;苏明忠. 氯化物熔盐中Nd~(3+)在液体Ga电极上还原的电化学行为[J]. 金属学报, 1991, 27(3): 111-115.