Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 411-418    DOI: 10.11900/0412.1961.2017.00135
  本期目录 | 过刊浏览 |
钛合金薄壁构件激光冲击残余应力稳定性研究
何卫锋1, 李翔1, 聂祥樊1,2(), 李应红1, 罗思海1
1 空军工程大学等离子体动力学重点实验室 西安 710038
2 华东理工大学机械与动力工程学院 上海 200237
Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components
Weifeng HE1, Xiang LI1, Xiangfan NIE1,2(), Yinghong LI1, Sihai LUO1
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
2 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
全文: PDF(2445 KB)   HTML
摘要: 

针对航空发动机压气机薄叶片激光冲击后残余压应力的严重松弛问题,对TC11钛合金薄壁试件激光冲击后进行轴向拉-拉疲劳实验和真空保温处理,通过X射线衍射测试获得疲劳载荷和热应力载荷作用下的应力松弛规律,并分析松弛机理。实验结果表明:疲劳载荷 (最大应力σmax=500 MPa,应力比R=0.1)作用下表面残余压应力松弛了53%,前5次循环占了95%,且表面松弛程度和严重松弛深度都随疲劳载荷增大而增大,其松弛机理是局部材料发生塑性变形而引起的应力场重新分布。在200、300和400 ℃下恒定保温120 min后,表面残余压应力分别松弛了3%、29%和48%,而在200 ℃+400 ℃和300 ℃+400 ℃交替保温120 min后分别松弛了18%和58%,松弛均发生在前60 min内,且严重松弛深度随温度呈现相同变化规律,其松弛机理是热应力激活位错、晶界等进行运动和消亡而导致塑性回复。由于松弛机理不同,疲劳载荷与热应力载荷复合作用下应力松弛呈现出叠加效应。

关键词 薄壁构件激光冲击强化X射线衍射疲劳载荷热应力载荷应力松弛松弛机理    
Abstract

Because the compressor thin-blades of aero-engine often fractured in service, laser shock processing was suggested to be applied as a surface strengthening technology. Aim at the problem of compressive residual stress relaxation in laser-peened compressor thin-blades, TC11 titanium alloy thin-components were treated by laser shock processing and then conducted in axial tensile-tensile fatigue test and thermal insulation in vacuum. X-ray diffraction tests were carried out to obtain the relaxation rules of residual stress under fatigue loading and thermal stress loading. In addition, the relaxation mechanisms of residual stress were indicated. Experiment results demonstrate that surface compressive residual stress relaxes by 53%, and 95% of stress relaxation occurs in the previous 5 fatigue cycles under the fatigue loading (maximum stress σmax=500 MPa, stress ratio R=0.1). The surface relaxation degree and severely-relaxed depth increase with fatigue loading, and the relaxation mechanism is that plastic deformation of local area material results in residual stress redistribution. Surface compressive residual stress relaxes by 3%, 29% and 48% respectively after thermal insulation for 120 min under the constant temperature of 200 ℃, 300 ℃ and 400 ℃. Surface compressive residual stress relaxes by 18% and 58% respectively after thermal insulation for 120 min under the altering temperature of 200 ℃+400 ℃ and 300 ℃+400 ℃. The relaxation all occurs in the previous 60 min. There is a similar trend with temperature in the aspect of severely-relaxed depth. The relaxation mechanism under thermal stress loading is that dislocations and grain-boundaries are activated to move and annihilated, and then plastic deformation recovery occurs. Due to the distinction of relaxation mechanisms, there is an obvious superimposed effect under the combined action of fatigue loading and thermal stress loading.

Key wordsthin-component    laser shock processing    X-ray diffraction    fatigue loading    thermal stress loading    stress relaxation    relaxation mechanism
收稿日期: 2017-04-17     
基金资助:资助项目 国家重点基础研究发展计划项目No.2015CB057400,国家自然科学基金项目No.51505496,博士后创新人才支持计划项目No.BX201700077和陕西省高校科协青年人才托举计划项目No.20170510
作者简介:

作者简介 何卫锋,男,1977年生,教授,博士

引用本文:

何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
Weifeng HE, Xiang LI, Xiangfan NIE, Yinghong LI, Sihai LUO. Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components. Acta Metall Sin, 2018, 54(3): 411-418.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00135      或      https://www.ams.org.cn/CN/Y2018/V54/I3/411

图1  TC11钛合金薄壁试件尺寸与激光冲击处理示意图
图2  保温处理与应力测试方案
图3  不同循环次数下表面残余应力松弛曲线
图4  10000 cyc后的截面残余应力分布曲线
图5  不同疲劳载荷条件下的截面残余应力分布曲线
图6  不同保温条件下的残余应力分布曲线
图7  不同保温条件下的残余应力分布曲线
图8  350 ℃保温10 h处理前后TC11钛合金试样表面组织的TEM像和SAED谱
图9  疲劳与热应力载荷复合作用下的残余应力分布曲线
[1] Hong J, Zhang D Y, Chen L L.Review on investigation of high cycle fatigue failures for the aero engine blade[J]. J. Aeros. Power,2009, 24: 652(洪杰, 张大义, 陈璐璐. 气流激励下的叶片高周疲劳寿命研究的发展 [J]. 航空动力学报, 2009, 24: 652)
[2] Lindermann J, Buque C, Appel F.Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Mater., 2006, 54: 1155
[3] Avilés R, Albizuri J, Rodríguez A, et al.Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel[J]. Int. J. Fatigue, 2013, 55: 230
[4] Charles S M, Tao W, Lin Y, et al.Laser shock processing and its effects on microstructure and properties of metal alloys: A review[J]. Int. J. Fatigue, 2002, 24: 1021
[5] Peyre P, Fabbro R, Merrien P, et al.Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior[J]. Mater. Sci. Eng., 1996, A210: 102
[6] Nie X F, He W F, Wang X D, et al.Effects of laser shock peening on microstructure and mechanical properties of TC17 titanium alloy[J]. Rare Met. Mater. Eng., 2014, 43: 1691(聂祥樊, 何卫锋, 王学德等. 激光冲击强化对TC17钛合金微观组织和力学性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 1691)
[7] Gao Y K.Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy[J]. Acta Metall. Sin., 2016, 52: 915(高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915)
[8] Luong H, Hill M R.The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Mater. Sci. Eng., 2010, A527: 699
[9] Wei X L, Ling X.Numerical modeling of residual stress induced by laser shock processing[J]. Appl. Surf. Sci., 2014, 301: 557
[10] Prevéy P.The effect of cold work on the thermal stability of residual compression in surface enhanced IN718 [A]. 20th ASM Materials Solutions Conference & Exposition[C]. Missouri: ASM, 2000: 1
[11] Dahotre N B, Harimkar S P.Laser Fabrication and Machining of Materials[M]. New York: Springer, 2008: 477
[12] Ren X D, Zhang Y K, Yongzhuo H F, et al.Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy[J]. Mater. Sci. Eng., 2011, A528: 2899
[13] He W F, Li Y H, Li Q P, et al.Vibration fatigue performance and strengthening mechanism of TC6 titanium alloy by laser shock peening[J]. Rare Met. Mater. Eng., 2013, 42: 1643(何卫锋, 李应红, 李启鹏等. LSP提高TC6钛合金振动疲劳性能及强化机理研究 [J]. 稀有金属材料与工程, 2013, 42: 1643)
[14] Maawad E, Sano Y, Wagner L, et al.Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys[J]. Mater. Sci. Eng., 2012, A536: 82
[15] Prevéy P, Hornbach D, Mason P.Thermal residual stress relaxation and distortion in surface enhanced gas turbine engine components [A]. Proceedings of the 17th Heat Treating Society Conference and Exposition and the 1st International Induction Heat Treating Symposium[C]. Materials Park, OH: ASM, 1998: 3
[16] Sakai T, Akita K, Ohya S, et al.The effect of static and fatigue loading on residual stress induced by laser peening[J]. J. Soc. Mater. Sci., 2008, 57: 648
[17] Hatamleh O, Rivero I V, Swain S E.An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints[J]. Mater. Des., 2009, 30: 3367
[18] Meng X K, Zhou J Z, Su C, et al.Residual stress relaxation and its effects on the fatigue properties of Ti6Al4V alloy strengthened by warm laser peening[J]. Mater. Sci. Eng., 2017, A680: 297
[19] Zhou Z, Gill A S, Telang A, et al.Experimental and Finite Element Simulation Study of Thermal Relaxation of Residual Stresses in Laser Shock Peened IN718 SPF Superalloy[J]. Exp. Mech., 2014, 54: 1597
[20] Ren X D, Zhan Q B, Yuan S Q, et al.A finite element analysis of thermal relaxation of residual stress in laser shock processing Ni-based alloy GH4169[J]. Mater. Des., 2014, 54: 708
[21] Li Q P, Li Y H, He W F, et al.Residual stress of laser peening processed TC17 and stress relax prediction model based on support vector machines theory[J]. J. Aeros. Power, 2012, 27: 307(李启鹏, 李应红, 何卫锋等. TC17钛合金激光喷丸应力场及支持向量机应力热松弛模型 [J]. 航空动力学报, 2012, 27: 307)
[22] Li Y H, Zhou L C, He W F, et al.The strengthening mechanism of a nickle-based alloy after laser shock processing at high temperatures[J]. Sci. Tech. Adv. Mater., 2013, 14: 0550010
[23] Jiao Y, He W F, Luo S H, et al.Study of micro-scale laser shock processing without coating improving the high cycle fatigue performance of K24 simulated blades[J]. Chin. J. Lasers, 2015, 42: 1003002(焦阳, 何卫锋, 罗思海等. 无保护层激光冲击提高K24合金高周疲劳性能研究 [J]. 中国激光, 2015, 42: 1003002)
[24] Altenberger I, Nalla R K, Sano Y, et al.On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 ℃[J]. Int. J. Fatigue, 2012, 44: 292
[25] “Chinese Aeronautical Material handbook” Edits Committee. Chinese Aeronautical Material Handbook [M]. 2nd Ed., Beijing: Chinese Standard Press, 2002: 235(《中国航空材料手册》总编委会. 中国航空材料手册 [M]. 第2版, 北京: 中国标准出版社, 2002: 235)
[26] Nie X F, He W F, Zang S L, et al.Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening[J]. Chin. J. Lasers, 2013, 40: 0803006(聂祥樊, 何卫锋, 臧顺来等. 激光喷丸提高TC11钛合金高周疲劳性能的试验研究 [J]. 中国激光, 2013, 40: 0803006)
[27] Nie X F, He W F, Zang S L, et al.Effects on structure and mechanical properties of TC11 titanium alloy by laser shock peening[J]. J. Aeros. Power, 2014, 29: 321(聂祥樊, 何卫锋, 臧顺来等. 激光冲击对TC11钛合金组织和力学性能的影响 [J]. 航空动力学报, 2014, 29: 321)
[28] Braisted W, Broekman R.Finite element simulation of laser shock Peening[J]. Int. J. Fatigue, 1999, 21: 719
[1] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[2] 李长记,邹敏杰,张磊,王元明,王甦程. 外延膜的高分辨X射线衍射分析[J]. 金属学报, 2020, 56(1): 99-111.
[3] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[4] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[5] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[6] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
[7] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[8] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[9] 曹铁山, 方旭东, 程从前, 赵杰. 应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J]. 金属学报, 2014, 50(11): 1343-1349.
[10] 聂文金 尚成嘉 吴圣杰 施培建 程俊杰 张晓兵. Nb对奥氏体热变形后等温回复的影响[J]. 金属学报, 2012, 48(7): 775-781.
[11] 谭军 李聪 孙超 应诗浩 连姗姗 阚细武 冯可芹. Zr--4合金应力松弛过程中的热激活变形与动态应变时效[J]. 金属学报, 2009, 45(2): 173-177.
[12] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[13] 曹为民; 陈浩; 石新红; 朱律均; 姬学彬; 张磊 ; 印仁和 . Co/Pd纳米多层膜的制备及其磁性能[J]. 金属学报, 2008, 44(4): 445-450 .
[14] 赵宁; 潘学民; 马海涛; 王来 . Sn-Cu钎料液态结构的研究[J]. 金属学报, 2008, 44(4): 467-472 .
[15] 张俊; 王苏程; 吴尔冬; 张健; 楼琅洪 . X射线衍射法测定加载条件下镍基单晶高温合金的表层应力状态[J]. 金属学报, 2007, 43(11): 1161-1164 .