Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 762-772    DOI: 10.11900/0412.1961.2018.00557
  本期目录 | 过刊浏览 |
高强耐蚀管钢点状偏析及带状缺陷的特征与演变
李博1,张忠铧2,刘华松1,罗明2,兰鹏1,唐海燕1,张家泉1()
1. 北京科技大学冶金与生态工程学院 北京 100083
2. 宝钢中央研究院钢管技术中心 上海 201900
Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel
Bo LI1,Zhonghua ZHANG2,Huasong LIU1,Ming LUO2,Peng LAN1,Haiyan TANG1,Jiaquan ZHANG1()
1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Tube & Pipe Department, Baosteel Research Institute, Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China
引用本文:

李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
Bo LI, Zhonghua ZHANG, Huasong LIU, Ming LUO, Peng LAN, Haiyan TANG, Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. Acta Metall Sin, 2019, 55(6): 762-772.

全文: PDF(35222 KB)   HTML
摘要: 

基于钢坯源头对高强耐蚀管钢热轧材与调质材中发现的带状偏析缺陷进行了实验研究。利用OM、SEM、EDS、EPMA等手段,揭示了高强石油套管钢圆坯中存在的各种点状偏析特征及其与热轧管带状组织缺陷的联系,并分析了热轧管和调质管带状缺陷的成因及差异。结果指出,铸坯中存在斑块型和疏松型2类点状偏析,其中均存在较为严重的C、Cr、Mo、Mn等合金元素正偏析,前者偏析区域内还往往存在细小的枝晶亚结构。统计计算表明,铸坯中不同偏析类型在轧材中造成的带状缺陷宽度也明显不同,点状偏析是管材中难以消除的大尺度带状缺陷的源头。热轧管和调质管中带状缺陷组织中均存在明显的合金元素偏析,但前者为珠光体加贝氏体(P+B)组织带状,后者为颗粒型碳化物带状,两者对管材硬度均匀性有不同程度影响。

关键词 高强耐蚀管钢凝固组织点状偏析带状缺陷硬度    
Abstract

C110 casing tube is one of the high strength corrosion resistant steel products for deep well oil exploration. Due to the co-existence of acidic media such as H2S and the high pressure, there are frequently sulfide stress corrosion cracking (SSC) failures produced in the tubes, which are supposed to be closely connected with their banded segregation defects. The relationship between the as-cast spot segregation and the following as-rolled banded defects, together with the impacts of quenching and tempering (QT) treatment have been revealed. The banded defects in high strength corrosion resistant oil tube have been studied experimentally from its very beginning of as-cast state. With aids of OM, SEM, EDS and EPMA observation and analysis, the various spot like segregations in round casting were revealed along with their following banded structure in both as-rolled and QT tubes. The mechanism and appearance of the segregation induced banded defects were investigated comparatively of the both tubes. It is pointed out that there are normally two kinds of spot like segregations in steel castings, speckle type and porosity type, respectively. There are not only severe positive segregations of solutes, such as C, Cr, Mo and Mn etc., in the macro-etched spot like areas, a finer dendritic sub-structure has also been observed in the speckle type spot segregation zones. It has been found that the width of the banded defects in the as-rolled tubes is closely related to the types of segregations, and the severe banded defects, which are difficult to remove by heat treatment, are recognized to originate directly from the spot like segregations. Solute segregations are found in the microstructure of banded defects of the both as-rolled and QT tubes but with different existences. A kind of pearlite plus bainite banded structure is present in the former tube, while the banded defect of latter is composed of concentrated granular carbides, which explains the difference of their hardness behavior.

Key wordshigh strength corrosion resistant tube steel    solidification structure    spot segregation    banded defect    hardness
收稿日期: 2018-12-21     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(Nos.U1860111);国家自然科学基金项目(51874033)
作者简介: 李 博,男,1993年生,硕士生
图1  铸坯与枝晶侵蚀取样示意图
图2  管材取样与检测位置示意图
图3  铸坯1/4横截面低倍侵蚀与代表性部位枝晶特征
图4  铸坯横截面自表及里不同位置枝晶形貌
图5  铸坯横截面上自表及里凝固二次枝晶间距变化
图6  铸坯点状偏析区域枝晶形貌与EPMA面扫描和线扫描分析结果
图7  热轧管和调质管带状组织侵蚀结果
图8  热轧管和调质管带状缺陷频率分布图
图9  热轧管带状组织SEM像
图10  热轧管带状组织EPMA面扫描和线扫描分析结果
图11  调质管带状组织形貌
图12  调质管壁内正常区域与条带区域的SEM像
PositionCFe
11.6398.37
21.7198.29
31.9098.10
41.8298.18
51.2398.77
61.3798.63
71.1698.84
表1  图12a中正常组织区域标识点成分EDS分析结果
图13  调质管带状组织EPMA面扫描和线扫描分析结果
图14  热轧管和调质管硬度分布
PositionCTiCrMnFeNbMo
12.346.7385.445.49
22.590.831.6894.90
32.111.3896.51
42.4697.54
51.3996.532.09
61.1198.89
表2  图12b中条带区域标识点成分EDS分析结果
图15  斑块型点状偏析和疏松型点状偏析形貌
[1] Dong X M, Chen Y X, Zhang Z H. Corrosion behavior of H2S resistant steel in H2S solution [J]. Corros. Prot., 2016, 37: 832
[1] (董晓明, 陈业新, 张忠铧. 耐硫化氢腐蚀钢在硫化氢介质中的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 832)
[2] Tsay L W, Chi M Y, Chen H R, et al. Investigation of hydrogen sulfide stress corrosion cracking of PH 13-8 Mo stainless steel [J]. Mater. Sci. Eng., 2006, A416: 155
[3] Zhao M C, Shan Y Y, Li Y H, et al. Effect of microstructure on sulfide stress corrosion cracking of pipeline steels [J]. Acta Metall. Sin., 2001, 37: 1087
[3] (赵明纯, 单以银, 李玉海等. 显微组织对管线钢硫化物应力腐蚀开裂的影响 [J]. 金属学报, 2001, 37: 1087)
[4] Yin Y Q, Tang C X, Zhao J B, et al. Effect of microstructure characteristics on hydrogen sulfide corrosion resistance of X70MS pipe steel [J]. Heat Treat. Met., 2013, 38(5): 32
[4] (尹雨群, 唐春霞, 赵晋斌等. 组织特征对X70MS管线钢抗H2S腐蚀行为的影响 [J]. 金属热处理, 2013, 38(5): 32)
[5] Omura T, Kobayashi K. Hydrogen Embrittlement of OCTG and Linepipes [J]. Corros. Eng., 2011, 60(4): 156
[6] Zhang Z H, Liu M, Liu Y H, et al. A systematical analysis with respect to multiple hydrogen traps influencing sulfide stress cracking behavior of API-5CT-C110 casing steel [J]. Mater. Sci. Eng., 2018, A721: 81
[7] Vollmer L W. The behavior of steels in hydrogen sulfide environments [J]. Corrosion, 1958, 14(7): 38
[8] Urband B E, Morey S. High strength sour service C110 casing [A]. SPE/IADC Drilling Conference [C]. Amsterdam: Society of Petroleum Engineers (SPE), 1999: 14
[9] Haida O, Kitaoka H, Habu Y, et al. Macro- and semi-macroscopic features of the centerline segregation in CC slabs and their effect on product quality [J]. Trans. Iron Steel Inst. Jpn., 1984, 24: 891
[10] Ji Y, Lan P, Geng H, et al. Behavior of spot segregation in continuously cast blooms and the resulting segregated band in oil pipe steels [J]. Steel Res. Int., 2018, 89: 331
[11] Zhang Y L, Liu H Y, Ruan X J, et al. Microsegregation behaviors of alloy elements and their effects on the formation of banded structure in pinion steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(suppl.): 199
[11] (张延玲, 刘海英, 阮小江等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响 [J]. 北京科技大学学报, 2009, 31(suppl.): 199)
[12] Tian Y Q, Song J Y, Wei Y L, et al. Influence of controlled rolling and cooling on banded structure of J55 oil casing [J]. J. Plast. Eng., 2011, 18(6): 110
[12] (田亚强, 宋进英, 魏英立等. 控轧控冷工艺对J55石油套管用钢带状组织影响 [J]. 塑性工程学报, 2011, 18(6): 110)
[13] Oh K S, Chang Y W. Macro and microscopic segregation behavior of center segregations in high carbon steel CC blooms during the final stage of solidification [J]. Process. Technol., 1995, 13: 381
[14] Tsuchida Y, Nakada M, Sugawara I, et al. Behavior of semi-macroscopic segregation in continuously cast slabs and technique for reducing the segregation [J]. Trans. Iron Steel Inst. Jpn., 1984, 24: 899
[15] Xu Z G, Wang X H, Huang F X, et al. Solidification structure and semi-macro segregation of pipeline steel continuous casting slabs [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 751
[15] (许志刚, 王新华, 黄福祥等. 管线钢连铸板坯的半宏观偏析和凝固组织 [J]. 北京科技大学学报, 2014, 36: 751)
[16] Pre?linger H, Mayr M, Tragl E, et al. Assessment of the primary structure of slabs and the influence on hot-and cold-rolled strip structure [J]. Steel Res. Int., 2006, 77: 107
[17] Ji Y, He Q, Geng H, et al. Effect of dendritic structure on the spot segregation of continuously cast round bloom [A]. AISTech 2017-Proceedings of the Iron and Steel Technology Conference [C]. Nashiville: Association for Iron and Steel Technology (AISTECH), 2017: 2599
[18] Wang Q Y. Introduction to Metallurgical Technology [M]. Beijing: Metallurgical Industry Press, 2006: 104
[18] (王庆义. 冶金技术概论 [M]. 北京: 冶金工业出版社, 2006: 104)
[19] Chaube S, Tennyson G, Singh A. Modelling of columnar-to-equiaxed transition and inclusion distribution in continuously cast steel billets [J]. Trans. Indian Inst. Met., 2015, 68: 1207
[20] Ma X P, Li D Z. The 3-dimensional morphology of dendrite during equiaxed solidification of an Al-5 wt.% Cu alloy [J]. J. Mater. Sci. Technol., 2019, 35: 239
[21] Ji Y. Segregation of billet castings and its heredity effect on the hot-rolled products [D]. Beijing: University of Science & Technology Beijing, 2018
[21] (纪 元. 连铸坯偏析及其铸轧遗传性研究 [D]. 北京: 北京科技大学, 2018)
[22] Verhoeven J D. A review of microsegregation induced banding phenomena in steels [J]. J. Mater. Eng. Perform., 2000, 9: 286
[23] Krauss G. Solidification, segregation, and banding in carbon and alloy steels [J]. Metall. Mater. Trans., 2003, 34B: 781
[24] Kirkaldy J S, Von Destinon-Forstmann J, Brigham R J. Simulation of banding in steels [J]. Can. Metall. Quart., 1962, 1: 59
[25] Thompson S W, Howell P R. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel [J]. Mater. Sci. Technol., 1992, 8: 777
[26] Kirkaldy J S, Purdy G R. Diffusion in multicomponent metallic systems: V. Interstitial diffusion in dilute ternary austenites [J]. Can. J. Phys., 1962, 40: 208
[27] Eckert J A, Howell P R, Thompson S W. Banding and the nature of large, irregular pearlite nodules in a hot-rolled low-alloy plate steel: A second report [J]. J. Mater. Sci., 1993, 28: 4412
[28] Gro?terlinden R, Kawalla R, Lotter U, et al. Formation of pearlitic banded structures in ferritic-pearlitic steels [J]. Steel. Res. Int., 1992, 63: 331
[29] Rivera-Díaz-Del-Castillo P E J, van Der Zwaag S, Sietsma J. A model for ferrite/pearlite band formation and prevention in steels [J]. Metall. Mater. Trans., 2004, 35A: 425
[30] Du C W. Study on surface microstructure and crack control of microalloyed continuous casting billet [D]. Beijing: University of Science and Technology Beijing, 2016
[30] (杜辰伟. 微合金连铸坯表层组织与裂纹技术控制研究 [D]. 北京: 北京科技大学, 2016)
[31] Yong Q L. Second Phase in Steel Material [M]. Beijing: Metallurgical Industry Press, 2006: 102
[31] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 102)
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[5] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[6] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[7] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[8] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[10] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[11] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[12] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[13] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[14] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[15] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.