Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 362-368    DOI: 10.11900/0412.1961.2018.00242
  本期目录 | 过刊浏览 |
基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算
储双杰1,杨勇杰1,和正华2,沙玉辉2(),左良2,3
1. 宝山钢铁股份有限公司 上海 201900
2. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
3. 中国科学院金属研究所 沈阳 110016
Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction
Shuangjie CHU1,Yongjie YANG1,Zhenghua HE2,Yuhui SHA2(),Liang ZUO2,3
1. Baoshan Iron & Steel Cooperation Limited, Shanghai 201900, China
2. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
Shuangjie CHU, Yongjie YANG, Zhenghua HE, Yuhui SHA, Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. Acta Metall Sin, 2019, 55(3): 362-368.

全文: PDF(2380 KB)   HTML
摘要: 

基于取向硅钢磁畴结构与磁致伸缩系数的定量关系,综合考虑激光刻痕参数和取向偏差角对应力封闭畴与横向畴2种90°磁畴结构的影响,提出反映刻痕参数与取向偏差角交互作用的磁致伸缩系数计算模型。计算结果表明,取向偏差角的大小决定了激光刻痕条件下磁致伸缩行为是由横向畴还是应力封闭畴主导;激光刻痕产生的局部封闭畴与杂散磁场可降低取向偏差角引起的磁致伸缩系数。刻痕能量密度和刻痕线间距等参数对取向硅钢磁致伸缩系数影响的计算结果与实测结果相吻合,表明本工作所提模型可为降低激光刻痕取向硅钢的噪音提供理论基础。

关键词 磁致伸缩磁畴结构取向硅钢激光刻痕取向偏差角    
Abstract

Grain-oriented silicon steel is a key material used for iron cores of transformers because grain-oriented is most desirable for magnetic cores. With the rapid development of modern power industry, the requirement for grain-oriented silicon steel with lower magnetostriction and iron loss have exigent. Although the application of laser-scribed technology can effectively reduce iron loss by refining main magnetic domain in high permeability grain-oriented silicon steels, the influence of laser-scribing on the magnetostriction of grain-oriented silicon steel is still controversial due to the complex magnetic domain structure led by interaction among crystal orientation, surface tension and scribing parameters. In this work, a magnetostriction model for laser-scribed grain-oriented silicon steel is proposed based on the relationship between magnetostrictive coefficient and two kinds of 90° magnetic domain, stress closure domain and transverse domain, and the interaction effects of laser scribing parameters and orientation deviation angle (tilt angle of [001] easy axis out of sheet surface) are analyzed. The orientation deviation angle determines which 90° domain structure of either transverse domain or stress closure domain acts as the dominant factor for magnetostrictive behavior. The stress closure domain and stray magnetic field introduced by laser scribing can reduce the magnetostriction coefficient originated from orientation deviation angle. The theoretical calculation on the effects of laser-scribed energy density and laser-scribed spacing on magnetostriction coefficient is in agreement with the direct experimental measurement. The proposed model concerning the interaction between laser-scribing parameters and orientation deviation angle can provide the theoretical basis to reduce the noise of laser-scribed grain-oriented silicon steel.

Key wordsmagnetostriction    magnetic domain    grain-oriented silicon steel    laser scribing    orientation deviation angle
收稿日期: 2018-06-04     
ZTFLH:  TG113.2  
基金资助:国家重点研发计划项目(2016YFB0300305);国家自然科学基金项目(51671049);宝钢股份科研项目(BGFZ18A09)
作者简介: 储双杰,男,1964年生,博士
图1  取向硅钢磁畴结构模型,包括取向偏差角产生的柳叶畴和横向畴及压应力产生的封闭畴
图2  不同磁畴能量和刻痕区杂散磁场能与刻痕能量密度(Ea)的关系
图3  刻痕条件下横向畴和应力封闭畴产生的磁致伸缩系数随取向偏差角的变化
图4  不同磁感应强度下取向硅钢磁致伸缩系数随Ea的变化
图5  B23P095取向硅钢在不同磁感应强度下磁致伸缩系数随Ea的变化
图6  不同取向偏差取向硅钢磁致伸缩系数随刻痕线间距的变化

Dp

mm

Vtransverse[17]

%

Vclosure[17]

%

λmeasured[17]

10-6

λcalculated* 10-6λcalculated** 10-6
0---0.1~-0.400.51
50.278.200.9~1.11.250.85
100.1352.440.2~0.40.330.29
表1  刻痕间距变化时取向硅钢磁致伸缩系数的计算结果与实验数据对比
[1] Xia Z S, Kang Y L, Wang Q L. Developments in the production of grain-oriented electrical steel [J]. J. Magn. Magn. Mater., 2008, 320: 3229
[2] Moses A J. Energy efficient electrical steels: Magnetic performance prediction and optimization [J]. Scr. Mater., 2012, 67: 560
[3] He Z Z, Zhao Y, Luo H W. Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012: 360
[3] 何忠志, 赵 宇, 罗海文. 电工钢 [M]. 北京: 冶金工业出版社, 2012: 360
[4] He C X, Yang F Y, Yan G C, et al. Effect of normalizing on textures of thin-gauge grain-oriented silicon steel [J]. Acta Metall. Sin., 2016, 52: 1063
[4] 何承绪, 杨富尧, 严国春等. 常化处理对薄规格取向硅钢织构的影响 [J]. 金属学报, 2016, 52: 1063
[5] Ushigami Y, Mizokami M, Fujikura M, et al. Recent development of low-loss grain-oriented silicon steel [J]. Magn J. Magn. Mater., 2003, 254-255: 307
[6] Nozawa T, Mizogami M, Mogi H, et al. Magnetic properties and dynamic domain behavior in grain-oriented 3% Si-Fe [J]. IEEE Trans. Magn., 1996, 32: 572
[7] Suzuki H, Akita K, Misawa H, et al. Mechanism of magnetic domain refinement on grain-oriented silicon steel by laser irradiation [J]. Soc J. Mater. Sci. Jpn, 2002, 8: 207
[8] Zhu Y C, Wang L F, Qiao X L. Methods and mechanism of the domain refinement of grain oriented Silicon steel by surface treament [J]. Res. Iron Steel, 2006, 34(6): 50
[8] 朱业超, 王良芳, 乔学亮. 表面处理细化取向硅钢磁畴的方法与机理 [J]. 钢铁研究, 2006, 34(6): 50)
[9] Imafuku M, Suzuki H, Akita K, et al. Effects of laser irradiation on iron loss reduction for Fe-3%Si grain-oriented silicon steel [J]. Acta Mater., 2005, 53: 939
[10] Iwata K, Imafuku M, Suzuki T, et al. Internal stress distribution for generating closure domains in laser-irradiated Fe-3%Si(110) steels [J]. J. Appl. Phys., 2015, 117: 2410
[11] Allia P, Celasco M, Milone A F, et al. Effect of the spike closure domains on the remanence and the magnetization curve in grain-oriented Si-Fe sheets [J]. J. Magn. Magn. Mater., 1982, 26: 25
[12] Imamura M, Sasaki T. The status of domain theory for an investigation of magnetostriction and magnetization processes in grain-oriented Si-Fe sheets [J]. Phy. Scr., 1988, 24: 29
[13] Zhang Z D. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials [J]. Acta Phys. Sin., 2015, 64: 67503
[13] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构 [J]. 物理学报, 2015, 64: 67503
[14] Moses A J. Effects of stresses on magnetic properties of silicon-iron laminations [J]. J. Mater. Sci., 1974, 9: 217
[15] Masui H. Influence of stress condition on initiation of magnetostriction in grain oriented silicon steel [J]. IEEE Trans. Magn., 1995, 31: 930
[16] Anderson P I, Moses A J, Stanbury H J. Assessment of the stress sensitivity of magnetostriction in grain-oriented silicon steel [J]. IEEE Trans. Magn., 2007, 43: 3467
[17] Tabrizi S. Study of effective methods of characterisation of magnetostriction and its fundamental effect on transformer core noise [D]. Wales: Cardiff University, 2013
[18] Redikul'tsev A A, Korzunin G S, Lobanov M L, et al. Effect of annealing on magnetostrictive characteristics of a grain-oriented electrical steel with ordinary and refined domain structure [J]. Phys. Met. Metall., 2014, 115: 650
[19] Fujikura M, Arai S, Kubota T. Effect of laser irradiation on the magnetostriction of grain-oriented electrical steels [J]. J. Magn. Soc. Jpn, 2001, 25: 895
[20] Ishida M, Nakano K, Honda A, et al. Analysis of the domain-refining effect of grooved grain-oriented silicon steel [J]. J. Magn. Soc. Jpn, 1994, 18: 809
[21] Iwata K, Fujikura M, Arai S, et al. Prediction method of basic domain structure in Fe3%Si(110) single crystal with grooved surface [J]. J. Appl. Phys., 2014, 115: 17A341
[22] Arai S, Mizokami M, Yabumoto M. Magnetostriction of grain oriented Si-Fe and its domain model [J]. Prz. Elektrotechniczny, 2011, 87: 20
[23] Hubert A, Sch?fer R. Magnetic Domains. The Analysis of Magnetic Microstructures [M]. Berlin: Springer,1999: 275
[24] Iwata K, Arai S, Ishiyama K. Calculation of basic domain width considering lancet domains in (110) [001] Fe3%Si [J]. IEEE Trans. Magn., 2014, 50: 353
[25] Iwata K, Ishiyama K, Suzuki M, et al. Quantitative analysis of 90° closure domains occurring by compressive stress in Fe3%Si (110) steels [J]. IEEE Trans. Magn., 2014, 50: 2007004
[26] Imamura M, Sasaki T, Nishimura H. AC magnetostriction in Si-Fe single crystals close to [J]. IEEE Trans. Magn., 1983, 19: 20
[27] Li J D, Gu Y Q, Guo Z Y. Decreasing the core loss of grain-oriented silicon steel by laser processing [J]. J. Mater. Process. Technol., 1997, 69: 180
[28] Sarkar S, Gopinath M, Chakraborty S S, et al. Analysis of temperature and surface hardening of low carbon thin steel sheets using Yb-fiber laser [J]. Surf. Coat. Technol., 2016, 302: 344
[29] Patri S, Gurusamy R, Molian P A, et al. Magnetic domain refinement of silicon-steel laminations by laser scribing [J]. J. Mater. Sci., 1996, 31: 1693
[1] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[2] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[3] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[4] 曾贵民,罗海文,李军,龚坚,黎先浩,王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究[J]. 金属学报, 2017, 53(6): 743-750.
[5] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[6] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[7] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[8] 刘志桥,杨平,毛卫民,崔凤娥. 取向硅钢中 114 418 织构对二次再结晶时晶粒异常长大的影响*[J]. 金属学报, 2015, 51(7): 769-776.
[9] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[10] 李慧,冯运莉,齐雪京,苍大强,梁精龙. Fe-3.15%Si低温取向硅钢不同常化工艺下的组织及析出相研究[J]. 金属学报, 2013, 49(5): 562-568.
[11] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[12] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[13] 颜孟奇 钱浩 杨平 宋惠军 邵媛媛 毛卫民. 电工钢中黄铜织构行为及其对Goss织构的影响[J]. 金属学报, 2012, 48(1): 16-22.
[14] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[15] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.