Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 562-568    DOI: 10.3724/SP.J.1037.2012.00644
  论文 本期目录 | 过刊浏览 |
Fe-3.15%Si低温取向硅钢不同常化工艺下的组织及析出相研究
李慧1),冯运莉2),齐雪京2),苍大强1),梁精龙2)
1) 北京科技大学冶金与生态学院, 北京 100083
2) 河北联合大学冶金与能源学院, 唐山 063009
STUDY ON MICROSTRUCTURE AND PRECIPITATES AT DIFFERENT NORMALIZING IN Fe-3.15%Si LOW TEMPERATURE ORIENTED SILICON STEEL
LI Hui1), FENG Yunli2), QI Xuejing2), CANG Daqiang1), LIANG Jinglong2)
1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2) College of Metallurgy and Energy, Hebei United University, Tangshan 063009
引用本文:

李慧,冯运莉,齐雪京,苍大强,梁精龙. Fe-3.15%Si低温取向硅钢不同常化工艺下的组织及析出相研究[J]. 金属学报, 2013, 49(5): 562-568.
LI Hui, FENG Yunli, QI Xuejing, CANG Daqiang, LIANG Jinglong. STUDY ON MICROSTRUCTURE AND PRECIPITATES AT DIFFERENT NORMALIZING IN Fe-3.15%Si LOW TEMPERATURE ORIENTED SILICON STEEL[J]. Acta Metall Sin, 2013, 49(5): 562-568.

全文: PDF(3841 KB)  
摘要: 

利用OM, TEM, EDS与XRD技术, 对Fe-3.15%Si低温取向硅钢热轧板不同常化处理后的显微组织、析出相及最终产品的磁性能进行了分析研究, 并对热轧板和常化板经过冷轧后的冷轧板织构进行了对比分析. 结果表明, 采用1120 ℃保温3 min二段式冷却的常化处理工艺, 常化板表层显微组织均匀, 沿板厚方向的显微组织的不均匀性显著, 对后续过程中形成高取向的Goss织构最有利, 取向硅钢的磁性能最高; 采用二段式冷却的常化冷却工艺最优, 在此冷却工艺下析出的细小的析出物数量最多,且弥散分布在基体中, 抑制剂的抑制效果最好, 对成品获得高磁性最有利; 热轧板、常化板经过冷轧后的冷轧板织构均主要由{111}<110>和{111}<112>织构组成, 但常化板较热轧板冷轧后的冷轧板γ取向线织构密度明显增高, 由此可以证实常化处理有助于取向硅钢最终获得高取向的Goss织构.

关键词 低温取向硅钢常化工艺组织析出相织构    
Abstract

The decreasing of slab heating temperature for grain-oriented silicon steel will reduce the amount of precipitates in hot rolled plate, and be disadvantage to the formation of ultimate Goss texture. The aim of normalizing is to control and adjust the amount, size and distribution of precipitates. Microstructures, precipitates and magnetic characteristics of finished products with different normalizing technologies for Fe-3.15%Si low temperature hot rolled grain-oriented silicon steel are researched, and the textures of cold rolled plates which are  original hot rolled plate and normalized plate are analyzed by means of OM, TEM, EDS and XRD, respectively. The results show that, normalizing technology with a temperature of 1120 ℃, holding 3 min, and a two-stage cooling is a most advantaged to obtain oriented silicon steel with sharper Goss texture and higher magnetic, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness; the normalizing technology with two-stage cooling is the optimum process, which due to more finer precipitates are dispersively distributed in the matrix, and it is beneficial for finished products to get a higher magnetic; in these two processes, they obtain the same textures  which are mainly consist of {111}<110> and {111}<112>, however,comparing with the cold rolled textures without normalizing, the texturesdensity of γ orientation line on cold rolled plate which treated by normalizing are significantly increased.Therefore, it is confirmed that normalizing is helpful for grain--oriented silicon steel to get sharper Goss texture.

Key wordslow temperature grain-oriented silicon steel    normalizing    microstructure    precipitate, texture
收稿日期: 2012-10-29     
基金资助:

国家自然科学基金项目51074062和51274083资助

作者简介: 李慧, 女, 1981年生, 博士生

[1] Yan M Q, Yang P, Jiang Q W, Fu Y J, Mao W M.  Acta Metall Sin, 2011; 47: 25


(颜孟奇, 杨平, 蒋奇武, 付勇军, 毛卫民. 金属学报, 2011; 47: 25)

[2] Hu H.  Acta Metall, 1960; 8: 124

[3] Ushioda K, Hutchinson W B.  ISIJ Int, 1989; 29: 862

[4] Bottcher A, Lucke K.  Acta Metall Mater, 1993; 41: 2503

[5] Misha S, Darmann C, Lucke K.  Metall Mater Trans, 1986; 17A: 1301

[6] Klaus G.  Steel Res Int, 2005; 76: 413

[7] Xia Z S, Kang Y L, Ni X J, Zhou Y J, Wang Q L.  J Univ Sci Technol Beijing, 2009; 31: 439

(夏兆所, 康永林, 倪献娟, 周谊军, 王全礼. 北京科技大学学报, 2009; 31: 439)

[8] Kumano T, Haratani T, Fujii N.  ISIJ Int, 2005; 45: 95

[9] Li J, Sun Y, Zhao Y.  Iron Steel, 2007; 42(10): 72

(李军, 孙颖, 赵宇. 钢铁, 2007; 42(10): 72)

[10] Liu G M.  Spec Steel, 2005; 26(1): 38

(刘光穆.特殊钢, 2005; 26(1): 38)

[11] Gao X H, Qi K M, Qiu C L.  Mater Sci Eng, 2006; A430: 138

[12] Futtu S , Chiba K.  J Magn Magn Mater, 2000; 215: 69

[13] Wang R P, Li S D, Fang Z M, Mao J H, Li P H, Xu G.  Met Heat Treat, 2009; 34(6): 9

(王若平, 黎世德, 方泽民, 毛炯辉, 李平和, 许光. 金属热处理, 2009; 34(6): 9)

[14] He Z Z.  Electric Steel. Beijing: Metallurgical Industry Press, 1997: 590

(何忠治. 电工钢. 北京: 冶金工业出版社, 1997: 590)

[15] Hong B D, Han K S, Kwan J.  Steel Res Int, 2005; 76: 448

[16] Chang S K.  Mater Sci Eng, 2007; A452: 93

[17] Nakashima S, Takashima K, Harase J.  ISIJ Int, 1991; 31: 1031

[18] Yu Y M.  PhD Dissertation, Northeastern University, Shenyang, 2008

(于永梅.东北大学博士学位论文, 沈阳, 2008)

[19] Mao W M, Yang P, Chen L.  Analysis and Measuring Technology of Material Texture.

Beijing: Metallurgical Industry Press, 2008: 32

(毛卫民, 杨平, 陈冷. 材料织构分析原理与检测技术. 北京:冶金工业出版社, 2008: 32)

[20] Zhang N, Yang P, Mao W M.  Acta Metall Sin, 2012; 48: 307

(张宁, 杨平, 毛卫民. 金属学报, 2012; 48: 307)

[21] Koh P K, Dunn C G.  Trans AIME, 1955; 203: 401

[22] Dunn C G.  Acta Metall, 1954; 2: 173

[23] Li C Y, Ye Y P, Chen S H.  Iron Steel, 2009; 37(4): 6

(李长一, 叶影萍, 陈士华. 钢铁, 2009; 37(4): 6)

[24] Walter J L, Hibbard W R.  Trans Metall Soc AIME, 1958; 212: 731

[25] Dorner D, Zaefferer S, Lahn L, Raabe D.  J Magn Magn Mater, 2006; 304: 183
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[12] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[15] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.