Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1063-1069    DOI: 10.11900/0412.1961.2015.00554
  论文 本期目录 | 过刊浏览 |
常化处理对薄规格取向硅钢织构的影响*
何承绪1,杨富尧1,2,严国春1,孟利1,3(),马光2,陈新2,毛卫民1
1 北京科技大学材料科学与工程学院, 北京 100083
2 国网智能电网研究院电工新材料及微电子研究所, 北京 102211
3 钢铁研究总院华东分院北京研发部, 北京 100081
EFFECT OF NORMALIZING ON TEXTURES OF THIN-GAUGE GRAIN-ORIENTED SILICON STEEL
Chengxu HE1,Fuyao YANG1,2,Guochun YAN1,Li MENG1,3(),Guang MA2,Xin CHEN2,Weimin MAO1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Electrical Engineering New Materials and Microelectronics, State Grid Smart Grid Research Institute, Beijing 102211, China
3 Beijing R&D Department, East China Branch of Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
Chengxu HE, Fuyao YANG, Guochun YAN, Li MENG, Guang MA, Xin CHEN, Weimin MAO. EFFECT OF NORMALIZING ON TEXTURES OF THIN-GAUGE GRAIN-ORIENTED SILICON STEEL[J]. Acta Metall Sin, 2016, 52(9): 1063-1069.

全文: PDF(1256 KB)   HTML
摘要: 

利用EBSD和XRD技术对比分析了常化和不常化2种工艺对薄规格取向硅钢组织及织构的影响. 结果表明, 2种工艺条件下的初次再结晶和二次再结晶织构存在着明显的差异. 经过常化处理的样品初次再结晶组织中{411}<148>和{111}<112>织构组分比不常化样品的低, 但Goss织构组分比不常化样品的高; 常化处理的样品二次再结晶织构多为锋锐的Goss织构, 磁性能优异, 而不常化处理的样品二次再结晶织构多为Brass织构和偏Goss织构. 此外, 经过常化处理样品的初次再结晶组织中Goss取向晶粒周围分布的20°~45°大角度晶界所占比例高于不常化处理样品. 2种样品初次再结晶后的平均晶粒尺寸差别并不明显, 均为20 μm, 而且整体晶粒尺寸分布也相近. 常化处理对最终磁性能有决定性影响, 主要体现在提高冷轧前Goss取向“种子”的比例以及优化再结晶组织中Goss取向晶粒周围的织构环境.

关键词 薄规格取向硅钢常化织构再结晶低温热轧板    
Abstract

The main purpose of normalizing for traditional high temperature Hi-B silicon steel is to obtain enough inhibitors and ensure abnormal growth of Goss grains during final annealing treatment. While compared with high temperature Hi-B silicon steel, inhibitors in thin-gauge grain oriented silicon steel, which is prepared by low temperature method, are obtained mainly by nitriding other than by normalizing. In this work, two kinds of thin-gauge grain-oriented silicon steel specimens with and without normalizing were prepared. Effects of normalizing on microstructures and textures of thin-gauge grain-oriented silicon steels were investigated by EBSD and XRD techniques. The results showed that there were significant differences in the primary recrystallization textures between the specimens processed with or without normalizing, which were named as normalizing specimens and non-normalizing specimens respectively, and so did secondary recrystallization textures. It could be found that compared with the non-normalizing specimens, the intensities of {411}<148> and {111}<112> primary recrystallization textures are lower in normalizing specimens, while the intensity of Goss texture is higher. The secondary recrystallization texture of normalizing specimens, which had excellent magnetic properties, were characterized as sharp Goss texture, while Brass texture and deviated Goss texture secondary recrystallization textures were obtained in the non-normalizing specimens. Besides, higher proportion of 20°~45° high-angle boundary surrounding Goss grains were shown in the normalizing specimens. However, the average grain size of normalizing and non-normalizing specimens were almost identical (20 μm), and their grain size distribution was similar. For the thin-gauge grain-oriented silicon steel prepared by low temperature method, normalizing exerted crucial effects on magnetic properties by increasing the proportion of Goss oriented “seeds” prior to cold rolling and providing appropriate environment for Goss recrystallied grains.

Key wordsthin-gauge grain-oriented silicon steel    normalizing    texture    recrystallization    low temperature hot-rolled plate
收稿日期: 2015-10-30     
基金资助:* 国家电网公司科技资助项目SGRI-WD-71-13-002
图1  常化(样品A)和不常化(样品B)硅钢初次再结晶组织的EBSD分析
图2  2组样品的初次再结晶组织中各种织构所占比例及晶粒尺寸分布
图3  2组样品二次再结晶宏观组织和{200}极图
图4  热轧和常化硅钢板的OIM像和ODF图
图5  样品A和B冷轧后XRD分析的ODF图
图6  脱碳退火后2组样品中抑制剂粒子的尺寸分布
图7  脱碳退火后2组样品初次再结晶组织中20°~45°晶界分布特征
[1] Li H, Feng Y L, Song M, Liang J L, Cang D Q.Trans Nonferrous Met Soc China, 2014; 24: 770
[2] Wang R P, Li S D, Fang Z M, Mao J H, Li P H, Xu G.Met Heat Treat, 2009; 34(6): 9
[2] (王若平, 黎世德, 方泽民, 毛炯辉, 李平和, 许光. 金属热处理, 2009; 34(6): 9)
[3] An Z G, Mao W M.Mater Heat Treat, 2010; 31(2): 45
[3] (安治国, 毛卫民. 材料热处理学报, 2010; 31(2): 45)
[4] Tsai M C, Hwang Y S.J Magn Magn Mater, 2010; 322: 2690
[5] Sakai T, Shiozaki M, Takashima K.J Appl Phys, 1979; 50: 2369
[6] Li H, Feng Y L, Qi X J, Cang D Q, Liang J L.Acta Metall Sin, 2013; 49: 562
[6] (李慧, 冯运莉, 齐雪京, 苍大强, 梁精龙. 金属学报, 2013; 49: 562 )
[7] Chang S K. Mater Sci Eng, 2007; A452-453: 93
[8] Kumano T, Haratani T, Fujii N.ISIJ Int, 2005; 45: 95
[9] Yan M Q, Qian H, Yang P, Mao W M, Jian Q W, Jin W X.J Mater Sci Technol, 2011; 27: 1065
[10] Kumano T, Haratani T, Fujii N.ISIJ Int, 2005; 45: 95
[11] Imamura T, Shingaki Y, Hayakawa Y.Metall Mater Trans, 2013; 44A: 1786
[12] Homma H, Hutchinson B.Acta Mater, 2003; 51: 3795
[13] Kumano T, Haratani T, Ushigami Y.ISIJ Int, 2002; 42: 440
[14] Ray R K, Jonas J J, Hook R E. Int Mater Rev, 1994; 39: 129
[15] Capos M F D, Landgraf F J G, Takanohashi R, Chagas F C, Falleiros I G S, Fronzaglia G C, Kahn H.ISIJ Int, 2004; 44: 591
[16] Hayakawa Y, Szpunar J A.Acta Mater, 1997; 45: 4713
[17] Rajmohan N, Szpunar J A, Hayakawa Y.Acta Mater, 1999; 47: 2999
[18] Hayakawa Y, Szpunar J A.Acta Mater, 1997; 45: 1285
[19] Rajmohan N, Szpunar J A, Hayakawa Y.Mater Sci Eng, 1999; A259: 8
[20] Lin P, Palumbo G, Harase J, Aust K T.Acta Mater, 1996; 44: 4677
[21] Rouag N, Penelle R.Texture Microstr, 1989; 11: 203
[22] Yoshitomi Y, Ushigami Y, Harase J, Nakayama T, Matsui H, Takahashi N.Mater Sci Forum, 1993; 715: 113
[23] Yoshitomi Y, Iwayama K, Nagashima T, Harase J, Takahashi N.Acta Mater, 1993; 41: 1577
[24] Etter A L, Baudin T, Penelle R.Scr Mater, 2002; 47: 725
[25] Hayakawa Y, Muraki M, Szpunar J A.Acta Mater, 1998; 46: 1063
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[11] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[12] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[13] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[14] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[15] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.