Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 169-172    DOI: 10.3724/SP.J.1037.2010.00343
  论文 本期目录 | 过刊浏览 |
Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能
陈立彪, 朱小溪, 李川, 刘敬华, 蒋成保, 徐惠彬
北京航空航天大学材料科学与工程学院 空天材料与服役教育部重点实验室, 北京 100191
<001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS
CHEN Libiao, ZHU Xiaoxi, LI Chuan, LIU Jinghua, JIANG Chengbao, XU Huibin
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191
引用本文:

陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
, , , , , . <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. Acta Metall Sin, 2011, 47(2): 169-172.

全文: PDF(595 KB)  
摘要: 采用悬浮区熔法, 加入籽晶控制生长取向, 以4 mm/h的生长速度, 制备了轴向<001>择优取向的 Fe81Ga19单晶. 极图测试结果发现, 采用偏离轴向<001>方向约5o的籽晶生长得到的单晶, 生长始端和生长末端轴向取向分别偏离<001>取向5o和4o, 上下取向差仅为1o. 另一单晶采用轴向<001>取向籽晶生长得到, 当施加60 MPa压力时, 饱和磁致伸缩性能达到0.0324%. 测试了<100>, <110>和<111> 取向单晶的初始磁化曲线, 利用初始磁化曲线, 计算得出Fe81Ga19单晶的磁晶各向异性常数值K1K2, 分别为1.3×104和-2.6×104 J/m3.
关键词 Fe81Ga19单晶<001>取向 磁致伸缩 磁晶各向异性    
Abstract:The Fe81Ga19 single crystals were grown in a floating zone melting furnace at a growth rate of 4 mm/h by using a seed crystal. A single crystal was grown by using the seed crystal oriented 5o from the <001> orientation. Pole figure tests were taken at different parts of the single crystal and showed that the start and end parts' axial orientations were 5o and 4o from the <001> orientation, respectively. Another single crystal was grown by using the seed crystal oriented <001> orientation. Magnetostrictive properties along the axis of the crystals λ// were measured for the single crystal, and the saturated magnetostriction λ// up to 0.0324% was achieved under the pre-stress of 60 MPa. Initial magnetization curves were measured in single crystals along <100>, <110> and <111> axis, respectively. From the magnetization curves, magnetocrystalline anisotropy constants of Fe81Ga19 alloys were calculated, and the values of K1 and K2 were 1.3×104 and -2.6×104 J/m3, respectively.
Key wordsFe81Ga19 single crystal    <001>    orientation    magnetostriction    magnetocrystalline anisotropy
收稿日期: 2010-07-12     
ZTFLH: 

TG132

 
基金资助:

国家自然基金资助50971008, 50925101和50921003项目

作者简介: 陈立彪, 男, 1986年生, 硕士生
[1] Clark A E, Hathaway K B, Wun–Foglea M, Restorff J B, Lograsso T A, Keppens V M, Petculescu G, Taylor R A. J Appl Phys, 2003; 93: 8621

[2] Datta S, Atulasimha J, Mudivarthi C, Flatau A B.J Magn Magn Mater, 2010; 322: 2135

[3] Kellogg R A, Russell A M, Lograsso T A, Flatau A B, Clark A E, Wun–Fogle M. Acta Mater, 2004; 52: 5043

[4] Kellogg R A, Flatau A B, Clark A E, Wun–Fogle M, Lograsso T A. J Appl Phys, 2002; 91: 7821

[5] Clark A E, Restorff J B, Wun–Fogle M, Lograsso T A, Schlagel D L. IEEE Trans Magn, 2000; 36: 3238

[6] Cullen J, Zhao P, Wuttiga M. J Appl Phys, 2007; 101: 123922

[7] Ruffoni M P, Pascarelli S, Gr¨ossinger R, Sato Turtelli R, Bormio–Nunes C, Pettifer R F. Phys Rev Lett, 2008; 101: 147202

[8] Mudivarthi C, Laver M, Cullen J, Flatau A B, Wuttig M. J Appl Phys, 2010; 107: 09A957

[9] Khachaturyan A G, Viehland D. Metall Mater Trans, 2007; 38A: 2308

[10] Khachaturyan A G, Viehland D. Metall Mater Trans, 2007; 38A: 2317

[11] Bhattacharyya S, Jinschek J R, Khachaturyan A, Cao H, Li J F, Viehland D. Phys Rev, 2008; 77B: 104107

[12] Summers E M, Lograsso T A, Wun–Fogle M. J Mater Sci, 2007; 42: 9582

[13] Atulasimha J, Flatau A B. J Intell Mater Syst Struct, 2008; 19: 1371

[14] Clark A E, Yoo J H, Cullen J R, Wun–Fogle M, Petculescu G, Flatau A. J Appl Phys, 2009; 105: 07A913

[15] Wun–Foglea M, Restorff J B, Clark A E, Dreyer E, Summers E. J Appl Phys, 2005; 97: 10M301

[16] Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910

[17] Rafique S, Cullen J R, Wuttig M, Cui J. J Appl Phys, 2004; 95: 6939
[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[5] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[6] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[7] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[8] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[9] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[10] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[11] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
[13] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[14] 白夏冰; 马天宇; 蒋成保 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械耦合系数[J]. 金属学报, 2008, 44(10): 1231-1234 .
[15] 高芳; 蒋成保; 刘敬华; 徐惠彬 . 第三组元添加对Fe--Ga合金相组成和磁致伸缩性能的影响[J]. 金属学报, 2007, 43(7): 683-687 .