Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 214-218    DOI: 10.3724/SP.J.1037.2010.00449
  论文 本期目录 | 过刊浏览 |
Tb-Dy-Fe-Co合金本征磁致伸缩性能
崔跃, 蒋成保, 徐惠彬
北京航空航天大学材料科学与工程学院, 空天材料与服役教育部重点实验室, 北京 100191
INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY
CUI Yue, JIANG Chengbao, XU Huibin
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191
引用本文:

崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
, , . INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. Acta Metall Sin, 2011, 47(2): 214-218.

全文: PDF(638 KB)  
摘要: 研究了Tb0.36Dy0.64(Fe0.85Co0.15)1.95合金中替换元素Co的分布及其对材料内禀磁性和本征磁致伸缩性能的影响. EDS分析表明, 合金中产生了Co富集的富稀土相, Co在其中的含量为21.18%(原子分数), 高于基体中Co的含量9.36%. Co元素部分替换Fe未改变巨磁致伸缩合金主相Laves相的结构, 合金的Curie温度从378℃提高到420℃, 拓展了应用温度范围; 同时, Co元素的添加部分补偿了由于Tb/Dy比例提高所增大的磁晶各向异性, 有利于改善合金低场性能. 为避免样品的生长取向对本征磁致伸缩性能测量的影响, 保证测量结果的准确性, 制备了 Tb0.36Dy0.64(Fe0.85Co0.15)1.95无取向等轴晶样品, 测量了合金的饱和磁致伸缩常数 λs. 通过Laves相XRD谱中(440)峰的劈裂, 计算了沿<111>方向上的磁致伸缩λ111, 由此计算出沿<100>方向上的磁致伸缩λ100. 与Tb0.3Dy0.7Fe1.95合金相比, Co添加后λ111稍有降低, λ100得到显著提升, 饱和磁致伸缩常数λs基本相当.
关键词 元素分布应用温度磁晶各向异性磁致伸缩    
Abstract:The distribution of Co, the intrinsic magnetism and magnetostriction of quaternary Tb-Dy-Fe-Co alloy were investigated. The SEM image showed the matrix (Laves phase) and the rare-earth (RE) rich phase in the annealed samples. The Co content (atomic fraction) in the RE rich phase was 21.18%, much higher than that in the matrix (9.36%). XRD patterns showed that Co partial substitution for Fe did not change the structure of MgCu2-type cubic Laves phase, contributing to the giant magnetostriction. Curie temperature Tc was increased remarkably with Co addition, resulting in wider operating temperature. The magnetocrystalline anisotropy compensation by Co addition was beneficial to improving the magnetostriction in low field. The solidified orientation influences the testing of intrinsic magnetostriction. In order to ensure the accuracy in the measurements, the equiaxed Tb-Dy-Fe-Co samples were prepared. The saturated magnetostrictive constant λs was tested. λ111 and λ100 were calculated by the cleavage of (440) diffraction peak of Laves phase. Compared with Terfenol-D alloy, λ111 in the Co-doped sample decreased slightly, but λ100 increased evidently and λs almost remained unchanged.
Key wordselement distribution    operating temperature    magnetic anisotropy    magnetostriction
收稿日期: 2010-09-06     
ZTFLH: 

TG113

 
基金资助:

国家杰出青年科学基金项目50925101和国家创新研究群体科学基金项目50921003资助

作者简介: 崔跃, 男, 1985年生, 硕士生
[1] Clark A E. Ferromagnetic Materials. Vol.1, Amsterdam: North–Holland, 1980: 531

[2] Jiles D C. Acta Mater, 2003; 51: 5907

[3] Sato K, Ishikawa Y, Mori K, Clark A E, Callen E. J Magn Magn Mater, 1986; 54–57: 875

[4] Shi Y G, Tang S L, Yu J Y, Zhai L, Zhang X K, Du YW, Yang C P. J Appl Phys, 2009; 105: 07A925

[5] Chelvane J A, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Scr Mater, 2009; 61: 548

[6] Zheng X P, Zhang P F, Li F S, Cheng Z H, Shen B G. J Magn Magn Mater, 2009; 321: 3842

[7] Xu L H, Jiang C B, Xu H B. Appl Phys Lett, 2006; 89: 192507

[8] Jiang C B, Ma T Y, Xu H B. J Alloys Compd, 2008; 449: 156

[9] Clark A E, Teter J P, Wun–Fogle M. J Appl Phys, 1991; 69: 5771

[10] Ma T Y, Jiang C B, Xu X, Xu H B. J Alloys Compd, 2005; 388: 34

[11] Ma T Y, Jiang C B, Xiao F, Xu H B. J Alloys Compd, 2006; 414: 276

[12] Ma T Y, Jiang C B, Xu H B. Appl Phys Lett, 2005; 86: 162505

[13] Westwood P, Abell J S, Pitman K C. J Appl Phys, 1990; 67: 4998

[14] Chen X, Zhuang Y H, Yan J L, Fei F. J Alloys Compd, 2009; 479: 35

[15] Sayetat F. J Appl Phys, 1975; 46: 3619

[16] Guo Z J, Zhang Z D, Wang B W, Zhao X G, Geng D Y, Liu W. J Phys, 2001; 34D: 884

[17] Wan D F, Ma X L. Magnetic Physics, Beijing: Electronics Industry Press, 1999: 337

(宛德福, 马兴隆. 磁性物理学, 北京: 电子工业出版社, 1999: 337)

[18] Zhang H, Zeng D C. J Appl Phys, 2010; 107: 123918

[19] Tang Y J, Luo H L, Gao N F, Liu Y Y, Pan S M. Appl Phys Lett, 1995; 66: 388

[20] Liu J J, Ren W J, Li D, Sun N K, Zhao X G, Li J, Zhang Z D. Phys Rev, 2007; 75B: 064429
[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[3] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[4] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[5] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[6] 张琪 王全兆 肖伯律 马宗义. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48(2): 135-141.
[7] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[8] 王华 史文 何燕霖 符仁钰 李麟. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268.
[9] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[10] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[11] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[12] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[13] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[14] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[15] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .