Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 911-916    DOI: 10.3724/SP.J.1037.2013.00171
  论文 本期目录 | 过刊浏览 |
国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为
张利涛,王俭秋
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER
ZHANG Litao,WANG Jianqiu
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016
引用本文:

张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
ZHANG Litao, WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. Acta Metall Sin, 2013, 49(8): 911-916.

全文: PDF(800 KB)  
摘要: 

采用直流电位降(DCPD)方法, 实现了模拟核电站高温高压水环境中的国产锻造态核级管材316L不锈钢应力腐蚀裂纹扩展速率的实时检测.断口观察表明, 国产316L不锈钢在高温高压水环境中表现出明显的沿晶应力腐蚀开裂(IGSCC)行为.降低溶解O含量, 增加溶解H含量能够显著降低应力腐蚀裂纹扩展速率;梯形波载荷下的裂纹扩展速率大于恒载荷下的扩展速率, 裂纹扩展速率随着(tfl=trs)/th比值的增加而升高.

关键词 直流电位降国产锻造态核级管材316L不锈钢高温高压水应力腐蚀裂纹扩展速率    
Abstract

Stress corrosion cracking growth rates of domestic forged nuclear grade 316L stainless steel (SS) were successfully measured in high temperature and high pressure water at various temperatures and under various loading mode. A direct current potential drop (DCPD) technique was used to monitor the crack growth throughout the test. The crack growth rate decreases with the increasing dissolved hydrogen content and the decreasing dissolved oxygen content. The crack growth rate under trapezoidal loading mode is bigger than that under constant loading. The fracture surface has typical intergranular stress corrosion cracking (IGSCC) characteristics.

Key wordsdirect current potential drop (DCPD)    domestic forged nuclear grade 316L stainless steel    high temperature and high pressure water    stress corrosion crack growth rate
收稿日期: 2013-04-08     
基金资助:

国家科技重大专项课题项目2011ZX06004--002和国家自然科学基金项目51025104资助

作者简介: 张利涛, 男, 1988年生, 博士生

[1] Han E H.  Acta Metall Sin, 2011; 47: 769
(韩恩厚. 金属学报, 2011; 47: 769)
[2] Han E H, Wang J Q, Wu X Q, Ke W.  Acta Metall Sin, 2010; 46: 1379
(韩恩厚, 王俭秋, 吴欣强, 柯伟. 金属学报, 2010; 46: 1379)
[3] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N.  Corros Sci, 2008; 50: 625
[4] Meng F J, Lu Z P, Shoji T, Wang J Q, Han E H, Ke W.  Corros Sci, 2011; 53: 2558
[5] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S.  Corros Sci, 2008; 50: 698
[6] Xue H, Li Z J, Lu Z P, Shoji T.  Corros Sci, 2011; 241: 731
[7] Andresen P L, Briant C L.  Corrosion, 1989; 45: 448
[8] Andresen P L.  Corrosion, 1991; 47: 917
[9] Andresen P L.  Corrosion, 1993; 49: 714
[10] Andresen P L.  Corrosion, 1987; 44: 450
[11] Andresen P L, Kim Y J.  Corrosion, 2003; 59: 584
[12] Bali S C, Kain V, Raja V S.  Corrosion, 2009; 65: 726
[13] Peng Q J, Teysseyre S, Andresen P L, Was G S.  Corrosion, 2007; 63: 1033
[14] Arioka K, Yamada T, Terachi T, Chiba G.  Corrosion, 2007; 63: 1114
[15] Arioka K, Yamada T, Terachi T, Chiba G.  Corrosion, 2006; 62: 568
[16] Byun T S, Hashimoto N, Farrell K.  Acta Mater, 2004; 52: 889
[17] Yamazaki S, Lu Z P, Ito Y, Takeda Y, Shoji T.  Corros Sci, 2008; 50: 835
[18] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S.  Corrosion, 2007; 63: 1021
[19] Andresen P L, Morra M M.  J Nucl Mater, 2008; 383: 97
[20] Peng Q J, Hou J, Sakaguchi K, Takeda Y, Shoji T.  Electrochim Acta, 2011; 56: 8375
[21] Andresen P L.  Corrosion, 2008; 64: 439
[22] Andresen P L, Hickling J, Ahluwalia A, Wilson J.  Corrosion, 2008; 64: 707
[23] Andresen P L, Briant C L.  Corrosion, 1989; 45: 448
[24] Andresen P L.  Corrosion, 1988; 44: 450
[25] Lu Z P, Shoji T, Takeda Y, Ito Y, Akira K, Tsuchiya N.  Corros Sci, 2008; 50: 625

[1] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[2] 谭季波, 王翔, 吴欣强, 韩恩厚. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为[J]. 金属学报, 2021, 57(3): 309-316.
[3] 郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
[4] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[5] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[6] 郦晓慧 王俭秋 韩恩厚 柯伟. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941-950.
[7] 吴欣强 徐松 韩恩厚 柯伟. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2011, 47(7): 790-796.
[8] 匡文军 吴欣强 韩恩厚. 闭塞区中Ni2+对核级304不锈钢高温水氧化行为的影响[J]. 金属学报, 2011, 47(7): 927-931.
[9] 杨波 李谋成 姚美意 周邦新 沈嘉年. 高温高压水环境中锆合金腐蚀的原位阻抗谱特征[J]. 金属学报, 2010, 46(8): 946-950.