Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1809-1817    DOI: 10.11900/0412.1961.2018.00124
  本期目录 | 过刊浏览 |
SiC单纤维增强TC17复合材料横向拉伸性能研究
刘佳琳1,2, 王玉敏1(), 张国兴1, 张旭1, 杨丽娜1, 杨青1, 杨锐1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension
Jialin LIU1,2, Yumin WANG1(), Guoxing ZHANG1, Xu ZHANG1, Lina YANG1, Qing YANG1, Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. Acta Metall Sin, 2018, 54(12): 1809-1817.

全文: PDF(5177 KB)   HTML
摘要: 

采用单纤维十字架结构试样测试分析了SiC纤维增强TC17复合材料横向力学性能,利用SEM对拉伸断口及横切面进行了显微观察,分析了界面失效位置,并结合有限元数值模拟计算,研究了界面损伤失效机制及裂纹扩展规律。结果表明,在横向载荷的作用下,单纤维试样应力-应变曲线的非线性拐点应力为(271±12) MPa,该点是界面完全失效的起始点。基于双线性内聚力模型的有限元分析结果与实验结果一致,表明复合材料界面失效模式为剪切失效,裂纹萌生于反应层和碳涂层的界面。有限元分析预测的裂纹萌生位置在与加载方向成40°~50°的圆周之间,实验中不同最大载荷下裂纹出现在与拉伸方向成24°~68°之间不同位置,预测宽度略小于实验结果,这种差异的主要原因是有限元模拟中界面设定为理想刚性界面且沿周向一致,而实际碳涂层和反应层的界面是非光滑的,沿圆周存在微缺陷。裂纹萌生后,在剪切应力作用下沿轴向和周向同时扩展,在沿周向扩展过程中,0°附近界面在径向拉伸应力作用下先于90°附近界面失效,随后90°附近界面在周向剪切应力作用下失效。界面完全失效后,应力重新分配,随载荷增加,界面张开程度加大,基体局部出现屈服,直至材料完全断裂。

关键词 SiC纤维钛基复合材料界面剪切强度横向强度有限元模拟    
Abstract

Transverse mechanical properties of titanium matrix composites (TMCs) play an important role during its engineering service. Although SiCf / TC17 composite is one of the most promising TMC candidates for aeroengine, as we know its transverse properties have not been reported yet until now. In this work, the transverse strength of single SiC fiber reinforced TC17 composite was evaluated using cruciform specimen. The surface and cross-section of fractured specimen were investigated by SEM to determine the failure position during tensile test. Finite element simulation method was also used to analyze the mechanism of interfacial failure and crack propagation. During the transverse tensile test of single fiber specimen, the initial non-linearity in the stress-strain curve occurred at the stress of (271±12) MPa, which indicated the beginning of fiber-matrix interface failure. SEM observation showed that the crack in the center of sample appeared at the interface of reaction layer and carbon coating with a 24°~68° angle to the applied loading direction and its length extended with the increase of the applied stress. The finite element simulation results based on bilinear cohesive element model showed that transverse fracture of composite interface was shear failure mode, which agreed well with the test results. Before the occurrence of non-linearity in the stress-strain curve, the crack initiated at the circular interface between reaction layer and carbon coating with a 40°~50° angle to the applied loading direction. Crack initiation locations in test samples were different with those in simulation samples, because the actual composite interface was rough and some micro-flaws formed in the interface, whereas it was assumed to be an ideal rigid interface for simulation. Then the crack propagated along both circumferential and axial directions because of the shear stress. With the crack growing, the interface close to 0°angle to the applied loading direction failed first caused by the radial tensile stress, whereas the interface near 90° failed later as a result of circumferential shear stress. After complete failure of the interface, stress redistribution occurred around the SiC fiber and the interface separation increased with the increasing of the applied load, which gave rise to the yielding and deforming of the matrix near fiber until the final fracture of the composite.

Key wordsSiC fiber    titanium matrix composite    interfacial shear strength    transverse strength    finite element simulation
收稿日期: 2018-04-03     
ZTFLH:  TG146.23  
作者简介:

作者简介 刘佳琳,男,1993年生,硕士生

图1  单纤维十字形拉伸试样示意图
图2  单纤维十字形试样横向载荷下的典型应力-应变曲线
图3  最大加载应力为606 MPa下试样拉伸后中心区界面开裂情况
图4  最大加载应力为470 MPa下试样拉伸后中心区界面开裂情况
图5  不同最大加载应力下试样拉伸后中心区界面开裂情况
图6  有限元模型网格划分
Material Young's Poisson Thermal Yield
modulus ratio expansion stress
GPa coefficient MPa
(23 ℃, 10-6 -1)
SiC 400 0.3 4.0 3800
TC17 118 0.3 10.8 600
表1  SiC纤维和TC17合金的性能
图7  双线性内聚力单元模型
图8  不同载荷下界面周向剪切应力和径向应力沿圆周分布规律
图9  有限元模拟的界面裂纹萌生及扩展过程(红色为失效单元)
图10  裂纹扩展过程中周向剪切应力和径向应力沿圆周分布规律
图11  基体局部等效塑性应变云图
图12  横向载荷下复合材料界面裂纹萌生及扩展过程示意图
[1] Johnson A, Wright P.Application of advanced materials to aircraft gas turbine engines [A]. 26th Joint Propulsion Conference[C]. Orlando: American Institute of Aeronautics and Astronautics, 1990: 2281
[2] Wang Y M, Zhang G X, Zhang X, et al.Advances in SiC fiber reinforced titanium matrix composites[J]. Acta Metall. Sin., 2016, 52: 1153(王玉敏, 张国兴, 张旭等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52: 1153)
[3] Hyde T H, Punyong K, Becker A A.Elasto-plastic finite element analysis of titanium metal matrix composite shafts under torsional loading[J]. J. Strain Anal. Eng. Des., 2015, 50: 199
[4] Leyens C, Kocian F, Hausmann J, et al.Materials and design concepts for high performance compressor components[J]. Aerosp. Sci. Technol., 2003, 7: 201
[5] Carrere N, Feyel F, Kruch S.Multi-scale modelling of silicon carbide reinforced titanium MMCs: Application to advanced compressor design[J]. Aerosp. Sci. Technol., 2003, 7: 307
[6] Aghdam M M, Pavier M J, Smith D J.Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis[J]. Int. J. Solids Struct., 2001, 38: 3905
[7] Ismar H, Schr?ter F, Streicher F.Effects of interfacial debonding on the transverse loading behaviour of continuous fibre-reinforced metal matrix composites[J]. Comput. Struct., 2001, 79: 1713
[8] Hu S F.The transverse failure of a single-fiber metal-matrix composite: Experiment and modeling[J]. Compos. Sci. Technol., 1996, 56: 667
[9] Dong M, Schmauder S.Transverse mechanical behaviour of fiber reinforced composites-FE modelling with embedded cell models[J]. Comput. Mater. Sci., 1996, 5: 53
[10] Li D S, Wisnom M R.Factors controlling the transverse tensile properties of unidirectional SiC/Ti-6AI-4V[J]. Compos. Eng., 1995, 5: 235
[11] Gundel D B, Miracle D B.The influence of interface structure and composition on the response of single-fiber SiC/Ti-6Al-4V composites to transverse tension[J]. Appl. Compos. Mater., 1998, 5: 95
[12] Gundel D B, Warrier S G, Miracle D B.The interface debond stress in single and multiple SiC fiber/Ti-6Al-4V composites under transverse tension[J]. Acta Mater., 1997, 45: 1275
[13] Warrier S G, Gundel D B, Majumdar B S, et al.Stress distribution in a transversely loaded cross-shaped single fiber SCS-6/Ti-6Al-4V composite[J]. Scr. Mater., 1996, 34: 293
[14] Akser E O, Choy K L.Finite element analysis of the stress distribution in a thermally and transversely loaded Ti-6Al-4V/SiC fibre composite[J]. Compos. Part. Appl. Sci. Manufactur., 2001, 32A: 243
[15] Warrier S G, Majumdar B S, Gundel D B, et al.Implications of tangential shear stress induced failure during transverse loading of SiCTi-6Al-4V composites[J]. Acta Mater., 1997, 45: 3469
[16] Gundel D B, Warrier S G, Miracle D B.The transverse tensile behavior of SiC-fiber/Ti-6Al-4V composites 2. Stress distribution and interface failure[J]. Compos. Sci. Technol., 1999, 59: 1087
[17] Gundel D B, Miracle D B.Transverse tensile behavior of SiC-fiber/Ti-6Al-4V composites—1. Experimental results[J]. Compos. Sci. Technol., 1998, 58: 1571
[18] Lou J H, Yang Y Q, Luo X, et al.Effects of fiber volume fraction on transverse tensile properties of SiC/Ti-6Al-4V composites[J]. Rare Met. Mater. Eng., 2011, 40: 575
[19] De Kok J M M, Meijer H E H. Deformation, yield and fracture of unidirectional composites in transverse loading: 1. Influence of fibre volume fraction and test-temperature[J]. Composites, 1999, 30A: 905
[20] Lou J H, Yang Y Q, Luo X, et al.The analysis on transverse tensile behavior of SiC/Ti-6Al-4V composites by finite element method[J]. Mater. Des., 2010, 31: 3949
[21] John R, Buchanan D J, Larsen J M.Prediction of transverse fatigue behavior of unidirectionally reinforced metal matrix composites[J]. Scr. Mater., 1998, 39: 1529
[22] Carrere N, Valle R, Bretheau T, et al.Multiscale analysis of the transverse properties of Ti-based matrix composites reinforced by SiC fibres: From the grain scale to the macroscopic scale[J]. Int. J. Plast., 2004, 20: 783
[23] Collings E W, Welsch G.Materials Properties Handbook: Titanium Alloys[M]. Materials Park, OH, USA: ASM International, 1994: 453
[24] Zhao C B, Wang Y M, Zhang G X, et al.Effect of heat treatment on the microstructure and properties of CVD SiC fiber[J]. J. Mater. Sci. Technol., 2017, 33: 1378
[25] Zhang X, Wang Y M, Lei J F, et al.The interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composite[J]. Acta Metall. Sin., 2012, 48: 1306(张旭, 王玉敏, 雷家峰等. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012, 48: 1306)
[26] Zhang X, Wang Y M, Yang Q, et al.Study on tensile behavior of SiCf/TC17 composites[J]. Acta Metall. Sin., 2015, 51: 1025(张旭, 王玉敏, 杨青等. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51: 1025)
[27] Liu P F, Li X K.Explicit finite element analysis of failure behaviors of thermoplastic composites under transverse tension and shear[J]. Compos. Struct., 2018, 192: 131
[28] Chandra N, Li H, Shet C, et al.Some issues in the application of cohesive zone models for metal-ceramic interfaces[J]. Int. J. Solids Struct., 2002, 39: 2827
[29] Zhang X.Study on interface reaction, residual stress and mechanical properties of SiCf/TC17 composite [D]. Shenyang: Institute of Metal Research, 2013(张旭. SiCf/TC17复合材料界面反应、残余应力及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[30] Timoshenko S P, Goodier J N.Theory of Elasticity[M]. 3rd Ed., New York: McGraw-Hill Book Company, 1970: 18
[31] Li K J, Yang Y Q, Luo X, et al.Transverse mechanical properties of continuous SiC fiber reinforced titanium matrix composites[J]. Rare Met. Mater. Eng., 2009, 38: 426
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[3] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[4] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] 武玉鹏, 张博, 李经明, 张双楠, 吴颖, 王玉敏, 蔡桂喜. 航空发动机整体叶环中纤维断丝超声检测方法[J]. 金属学报, 2020, 56(8): 1175-1184.
[6] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[7] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[9] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[10] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[11] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.
[12] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[13] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[14] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[15] 张旭 王玉敏 雷家峰 杨锐. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012, 48(11): 1306-1314.