|
|
新型含Cu管线钢的抗氢致开裂性能 |
史显波, 严伟, 王威, 单以银, 杨柯( ) |
中国科学院金属研究所 沈阳 110016 |
|
Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels |
Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG( ) |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
Xianbo SHI,
Wei YAN,
Wei WANG,
Yiyin SHAN,
Ke YANG.
Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. Acta Metall Sin, 2018, 54(10): 1343-1349.
[1] | Park G T, Koh S U, Jung H G, et al.Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corros. Sci., 2008, 50: 1865 | [2] | Koh S U, Jung H G, Kang K B, et al.Effect of microstructure on hydrogen-induced cracking of linepipe steels[J]. Corrosion, 2008, 64: 574 | [3] | Beidokhti B, Dolati A, Koukabi A H.Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507: 167 | [4] | Shi X B, Yan W, Wang W, et al.HIC and SSC behavior of high-strength pipeline steels[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 799 | [5] | Shi X B, Yan W, Wang W, et al.Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel[J]. J. Iron. Steel. Res. Int., 2015, 22: 937 | [6] | Shi X B, Wang W, Yan W, et al.Effect of martensite/austenite (M/A) constituent on H2S resistance of high strength pipeline steels[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 129(史显波, 王威, 严伟等. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35: 129) | [7] | Pressouyre G M.A classification of hydrogen traps in steel[J]. Metall. Trans., 1979, 10A: 1571 | [8] | Pressouyre G M, Bernstein I M.An example of the effect of hydrogen trapping on hydrogen embrittlement[J]. Metall. Trans., 1981, 12A: 835 | [9] | Yamasaki S, Takahashi T.Evaluation method of delayed fracture property of high strength steels[J]. Tetsu Hagané, 1997, 83: 454(山崎真吾, 高橋稔彦. 高強度鋼の耐遅れ破壊特性の定量的評価方法[J]. 鉄と鋼, 1997, 83: 454) | [10] | Szost B A, Vegter R H, Rivera-Díaz-del-Castillo P E J. Developing bearing steels combining hydrogen resistance and improved hardness[J]. Mater. Des., 2013, 43: 499 | [11] | Takahashi J, Kawakami K, Kobayashi Y, et al.The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography[J]. Scr. Mater., 2010, 63: 261 | [12] | Takahashi J, Kawakami K, Tarui T.Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography[J]. Scr. Mater., 2012, 67: 213 | [13] | Zhao M C, Yang K.Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides[J]. Scr. Mater., 2005, 52: 881 | [14] | Shi X B, Xu D K, Yan M C, et al.Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels[J]. Acta Metall. Sin., 2017, 53: 153(史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53: 153) | [15] | Shi X B, Yan W, Yan M C, et al.Effect of Cu addition in pipeline steels on microstructure, mechanical properties and microbiologically influenced corrosion[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 601 | [16] | Herbsleb G, Poepperling R K, Schwenk W.Occurrence and prevention of hydrogen induced stepwise cracking and stress corrosion cracking of low alloy pipeline steels[J]. Corrosion, 1980, 36: 247 | [17] | Taira T, Tsukada K, Kobayashi Y.Sulfide corrosion cracking of linepipe for sour gas service[J]. Corrosion, 1981, 37: 5 | [18] | Yoshino Y.Low alloy steels in hydrogen sulfide environment[J]. Corrosion, 1982, 38: 156 | [19] | Craig B D.Effect of copper on the protectiveness of iron sulfide films[J]. Corrosion, 1984, 40: 471 | [20] | Mendibide C, Sourmail T.Composition optimization of high-strength steels for sulfide stress cracking resistance improvement[J]. Corros. Sci., 2009, 51: 2878 | [21] | Jiao Z B, Luan J H, Zhang Z W, et al.Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996 | [22] | Hejazi D, Hap A J, Yazdipour N, et al.Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking[J]. Mater. Sci. Eng., 2012, A551: 40 | [23] | Chu W Y.Hydrogen Damaged and Delayed Fracture [M]. Beijing: Metallurgy Industry Press, 1988: 1(褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988: 1) | [24] | Zhao M C, Shan Y Y, Xiao F R, et al.Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite[J]. Mater. Lett., 2002, 57: 141 | [25] | Zhao M C, Tang B, Shan Y Y.Role of microstructure on sulfide stress cracking of oil and gas pipeline steels[J]. Metall. Mater. Trans., 2003, 34A: 1089 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|