|
|
定向凝固多孔金属研究进展 |
李言祥1,2( ), 刘效邦1 |
1 清华大学材料学院 北京 100084 2 先进成形制造教育部重点实验室(清华大学) 北京 100084 |
|
Directionally Solidified Porous Metals: A Review |
Yanxiang LI1,2( ), Xiaobang LIU1 |
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China |
引用本文:
李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
Yanxiang LI,
Xiaobang LIU.
Directionally Solidified Porous Metals: A Review[J]. Acta Metall Sin, 2018, 54(5): 727-741.
[1] | Shapovalov V I.Method for manufacturing porous articles [P]. US Pat, 5181549, 1993 | [2] | Shapovalov V, Boyko L.Gasar—A new class of porous materials[J]. Adv. Eng. Mater., 2004, 6: 407 | [3] | Hyun S K, Murakami K, Nakajima H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2001, A299: 241 | [4] | Simone A E, Gibson L J.The tensile strength of porous copper made by the GASAR process[J]. Acta Mater., 1996, 44: 1437 | [5] | Ogushi T, Chiba H, Nakajima H.Development of lotus-type porous copper heat sink[J]. Mater. Trans., 2006, 47: 2240 | [6] | Zhang H W, Chen L T, Liu Y, et al.Experimental study on heat transfer performance of lotus-type porous copper heat sink[J]. Int. J. Heat Mass Transfer, 2013, 56: 172 | [7] | Liu Y, Chen H F, Zhang H W, et al.Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant[J]. Int. J. Heat Mass Transfer, 2015, 80: 605 | [8] | Alvarez K, Hyun S K, Nakano T, et al.In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats[J]. Mater. Sci. Eng., 2009, C29: 1182 | [9] | Du H, Qi J Z, Lao Y X, et al.Oil retaining capability and sliding friction behaviour of porous copper with elongated cylindrical pores[J]. J. Mater. Process. Technol., 2012, 212: 1796 | [10] | Boiko L V.Formation of porous structures in metal-hydrogen systems[J]. Mater. Sci., 2002, 38: 544 | [11] | Paradies C J, Tobin A, Wolla J.The effect of GASAR processing parameters on porosity and properties in aluminum alloy [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 297 | [12] | Apprill J M, Poirier D R, Maguire M C, et al.GASAR porous metals process control [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 291 | [13] | Yamamura S, Shiota H, Murakami K, et al.Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen[J]. Mater. Sci. Eng., 2001, A318: 137 | [14] | Nakajima H, Ikeda T, Hyun S K.Fabrication of lotus-type porous metals and their physical properties[J]. Adv. Eng. Mater., 2004, 6: 377 | [15] | Drenchev L, Sobczak J, Sobczak N, et al.A comprehensive model of ordered porosity formation[J]. Acta Mater., 2007, 55: 6459 | [16] | Liu Y, Li Y X.A theoretical study of Gasarite eutectic growth[J]. Scr. Mater., 2003, 49: 379 | [17] | Liu Y, Li Y X, Wan J, et al.Metal-gas eutectic growth during unidirectional solidification[J]. Metall. Mater. Trans., 2006, 37A: 2871 | [18] | Zhang H W, Li Y X, Liu Y.Study of metal-hydrogen binary phase diagram in Gasar process[J]. Acta Metall. Sin., 2005, 41: 55(张华伟, 李言祥, 刘源. Gasar工艺中金属-氢二元相图的研究[J]. 金属学报, 2005, 41: 55) | [19] | Zhang H W, Li Y X, Liu Y.Gas pressure condition for obtaining uniform lotus-type porous structure by Gasar process[J]. Acta Metall. Sin., 2006, 42: 1171(张华伟, 李言祥, 刘源. Gasar工艺获得均匀藕状多孔结构的气压选择[J]. 金属学报, 2006, 42: 1171 | [20] | Zhang H W, Li Y X, Liu Y.Evaluation of porosity in lotus-type porous Cu fabricated with Gasar process[J]. Acta Metall. Sin., 2006, 42: 1165(张华伟, 李言祥, 刘源. 藕状规则多孔Cu气孔率的理论预测[J]. 金属学报, 2006, 42: 1165) | [21] | Liu Y, Li Y X.Theoretical analysis of bubble nucleation in GASAR materials[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 830 | [22] | Zhang H W, Li Y X, Liu Y.The critical processing conditions for directional solidification of solid/gas eutectics[J]. Acta Metall. Sin., 2007, 43: 589(张华伟, 李言祥, 刘源. 固/气共晶定向凝固中的工艺判据[J]. 金属学报, 2007, 43: 589) | [23] | Xie J X, Liu X H, Liu X F, et al.Fabrication and characterization of lotus-type porous pure copper bar[J]. Chin. J. Nonferrous Met., 2005, 15: 1869(谢建新, 刘新华, 刘雪峰等. 藕状多孔纯铜棒的制备与表征[J]. 中国有色金属学报, 2005, 15: 1869) | [24] | Liu X H, Yao D, Liu X F, et al.Deformation behaviors and constructive relation of lotus-type porous copper under compressive direction perpendicular to pores[J]. Chin. J. Nonferrous Met., 2009, 19: 1237(刘新华, 姚迪, 刘雪峰等. 藕状多孔铜沿垂直于气孔方向的压缩变形行为与本构关系[J]. 中国有色金属学报, 2009, 19: 1237) | [25] | Li Z J, Jin Q L, Yang T W, et al.A thermodynamic model for directional solidification of metal-hydrogen eutectic[J]. Acta Metall. Sin., 2014, 50: 507(李再久, 金青林, 杨天武等. 金属-氢共晶定向凝固热力学模型[J]. 金属学报, 2014, 50: 507) | [26] | Li X M, Li W Q, Jin Q L, et al.A steady solution of the gasar eutectic growth in directional solidification[J]. Chin. Phys., 2013, 22B: 078101 | [27] | Du H, Song G H, Nakajima H, et al.Study on lotus-type porous copper electroplated with a Ni coating on inner surface of pores[J]. Appl. Surf. Sci., 2013, 264: 772 | [28] | Olga K, Xu Z B, Hai H, et al.Pore structure and mechanical properties of directionally solidified porous aluminum alloys[J]. China Foundry, 2014, 11: 1 | [29] | Park J S, Hyun S K, Suzuki S, et al.Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique[J]. Acta Mater., 2007, 55: 5646 | [30] | He Y, Li Y X, Zhang H W, et al.Influence of withdrawing speed on the porous structures of Gasar ingots fabricated by Bridgman method[J]. J. Mater. Process. Technol., 2017, 245: 106 | [31] | Onishi H, Hyun S K, Nakajima H.Effect of hydrogen pressure on moisture-based fabrication of lotus-type porous nickel[J]. Mater. Trans., 2006, 47: 2120 | [32] | Onishi H, Ueno S, Nakajima H.An effect of addition of NiO powder on pore formation in lotus-type porous nickel[J]. Mater. Trans., 2008, 49: 2670 | [33] | Liu Y, Li Y X, Zhang H W.Fabrication of lotus-structured porous magnesium with Gasar process[J]. Acta Metall. Sin., 2004, 40: 1121(刘源, 李言祥, 张华伟. 藕状多孔金属Mg的Gasar工艺制备[J]. 金属学报, 2004, 40: 1121) | [34] | Liu Y, Li Y X, Wan J, et al.Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification[J]. Mater. Sci. Eng., 2005, A402: 47 | [35] | Yang Q Q, Liu Y, Li Y X, et al.Pore structure of unidirectional solidified lotus-type porous silicon[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3517 | [36] | Ide T, Iio Y, Nakajima H.Fabrication of porous aluminum with directional pores through continuous casting technique[J]. Metall. Mater. Trans., 2012, 43A: 5140 | [37] | Liu X B, Li Y X, He Y.Fabrication of high-porosity lotus-type porous aluminum in vacuum[J]. Metall. Mater. Trans., 2017, 48A: 1264 | [38] | Jiang G R, Li Y X, Liu Y.Experimental study on the pore structure of directionally solidified porous Cu-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 3405 | [39] | Jiang G R, Li Y X, Liu Y.Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 88 | [40] | Zhang X M, Li Y X, Liu Y, et al.Influence of the solidification temperature range on Gasar structures made from Cu-Mn alloys[J]. Int. J. Mater. Res., 2014, 105: 869 | [41] | Kashihara M, Suzuki S, Kawamura Y, et al.Fabrication of lotus-type porous carbon steel slabs by continuous casting technique in nitrogen atmosphere[J]. Metall. Mater. Trans., 2010, 41A: 2377 | [42] | Kashihara M, Yonetani H, Kobi T, et al.Fabrication of lotus-type porous carbon steel via continuous zone melting and its mechanical properties[J]. Mater. Sci. Eng., 2009, A524: 112 | [43] | Ikeda T, Aoki T. Nakajima H, Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property[J]. Metall. Mater. Trans., 2005, 36A: 77 | [44] | Park J S, Hyun S K, Suzuki S, et al.Fabrication of lotus-type porous Al-Si alloys using the continuous casting technique[J]. Metall. Mater. Trans., 2009, 40A: 406 | [45] | Zhang H W, Li Y X, Liu Y.Hydrogen solubility in pure metals for Gasar process[J]. Acta Metall. Sin., 2007, 43: 113(张华伟, 李言祥, 刘源. 氢在Gasar工艺常用纯金属中的溶解度[J]. 金属学报, 2007, 43: 113) | [46] | Shapovalov V I.Formation of ordered gas-solid structures via solidification in metal-hydrogen systems [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 281 | [47] | Apprill J M.Process control of GASAR porous metals [D]. Arizona: The University of Arizona, 1998 | [48] | Campbell J.Complete Casting Handbook: Metal Casting Processes, Techniques and Design[M]. Oxford: Butterworth-Heinemann, 2011: 24 | [49] | Zhang H W, Li Y X.Study on bubble nucleation in liquid metal[J]. Acta Phys. Sin., 2007, 56: 4864(张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56: 4864) | [50] | Zhang H W.Theoretical and experimental study on unidirectional solidification of metal-gas eutectics [D]. Beijing: Tsinghua University, 2006(张华伟. 金属-气体共晶定向凝固的研究 [D]. 北京: 清华大学, 2006) | [51] | Wang X.Fabrication of radial-type porous metal by bidirectional solidification of metal-gas eutectics [D]. Beijing: Tsinghua University, 2008(王雪. 金属-气体共晶二维定向凝固制备放射状规则多孔金属 [D]. 北京: 清华大学, 2008) | [52] | Wang X, Li Y X, Liu Y.Structural features in radial-type porous magnesium fabricated by radial solidification[J]. Mater. Sci. Eng., 2007, A444: 306 | [53] | Nakahata T, Nakajima H.Fabrication of lotus-type silver with directional pores by unidirectional solidification in oxygen atmosphere[J]. Mater. Trans., 2005, 46: 587 | [54] | Lee Y S, Hyun S K.Centrifugal casting for unpressurized fabrication of lotus-type porous copper[J]. Mater. Lett., 2012, 78: 92 | [55] | Hyun S K, Nakajima H.Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Lett., 2003, 57: 3149 | [56] | Hyun S K, Uchikoshi M, Mimura K, et al.Fabrication of porous high-purity iron with directional pores by continuous zone melting technique[J]. Mater. Trans., 2010, 51: 2076 | [57] | Sugiyama M, Hyun S K, Tane M, et al.Fabrication of lotus-type porous NiTi shape memory alloys using the continuous zone melting method and tensile property[J]. High Temp. Mater. Process., 2007, 26: 297 | [58] | He Y.Structural optimization of directionally solidified porous copper ingot [D]. Beijing: Tsinghua University, 2017(何蕴. 定向凝固多孔铜锭的结构优化 [D]. 北京: 清华大学, 2017) | [59] | Jiang G R, Li Y X.A model for calculating hydrogen solubility in liquid transition metals[J]. Metall. Mater. Trans., 2011, 42A: 1038 | [60] | Jiang G R, Li Y X, Liu Y.Calculation of hydrogen solubility in molten alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1130 | [61] | Jiang G R.Study on hydrogen solubility in molten alloys and directional solidification of porous Cu-Mn alloy [D]. Beijing: Tsinghua University, 2010(蒋光锐. 氢在合金熔体中的溶解度与定向凝固多孔铜锰合金的研究 [D]. 北京: 清华大学, 2010) | [62] | Hoshiyama H, Ikeda T, Nakajima H.Fabrication of lotus-type porous magnesium and its alloys by unidirectional solidification under hydrogen atmosphere[J]. High Temp. Mater. Process., 2007, 26: 303 | [63] | Zhang X M.Study on fabrication of bimodal porous metal by the Gasar and dealloying processes [D]. Beijing: Tsinghua University, 2013(张星明. Gasar-脱合金制备复合多孔金属的研究 [D]. 北京: 清华大学, 2013) | [64] | Aoki T, Ikeda T, Nakajima H.Fabrication of lotus-type porous brass by zinc diffusion into porous copper[J]. Mater. Trans., 2003, 44: 89 | [65] | Ikeda T, Nakajima H.Titanium coating of lotus-type porous stainless steel by vapour deposition technique[J]. Mater. Lett., 2004, 58: 3807 | [66] | Du M, Zhang H W, Li Y X, et al.Depositing and alloying on the inner surface of Gasar Cu pores by plating and annealing treatment[J]. Appl. Surf. Sci., 2015, 342: 69 | [67] | Du M, Zhang H W, Li Y X.Inner surface alloying on pores of lotus-type porous copper through electroless plating with supersonic vibration and annealing treatment[J]. Surf. Coat. Technol., 2015, 261: 1 | [68] | Du M, Zhang H W, Li Y X, et al.Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: Influences of preparation conditions[J]. Appl. Surf. Sci., 2016, 360: 148 | [69] | Du M, Zhang H W, Li Y X, et al.Fabrication and wettability of monolithic bimodal porous Cu with Gasar macro-pores and dealloying nano-pores[J]. Appl. Surf. Sci., 2015, 353: 804 | [70] | Yang Q Q, Liu Y, Li Y X.Modeling and simulation of structural formation of porous aluminum in Gasar solidification[J]. Acta Metall. Sin., 2014, 50: 1403(杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50: 1403) | [71] | Kim S Y, Park J S, Nakajima H.Fabrication of lotus-type porous aluminum through thermal decomposition method[J]. Metall. Mater. Trans., 2009, 40A: 937 | [72] | Kumar G S V, Mukherjee M, Garcia-Moreno F, et al. Reduced-pressure foaming of aluminum alloys[J]. Metall. Mater. Trans., 2013, 44A: 419 | [73] | Shapovalov V I.Prospects of the application of hydrogen as an alloying element[J]. Mater. Sci., 1994, 30: 419 | [74] | Xiang Y B.Mechanical properties of unidirectionally solidified regular porous magnesium [D]. Beijing: Tsinghua University, 2006(项亦斌. 一维定向凝固规则多孔镁力学性能研究 [D]. 北京: 清华大学, 2006) | [75] | Hyun S K, Ikeda T, Nakajima H.Fabrication of lotus-type porous iron and its mechanical properties[J]. Sci. Technol. Adv. Mater., 2004, 5: 201 | [76] | Simone A E, Gibson L J.Efficient structural components using porous metals[J]. Mater. Sci. Eng., 1997, A229: 55 | [77] | Hyun S K, Nakajima H.Anisotropic compressive properties of porous copper produced by unidirectional solidification[J]. Mater. Sci. Eng., 2003, A340: 258 | [78] | Ide T, Tane M, Ikeda T, et al.Compressive properties of lotus-type porous stainless steel[J]. J. Mater. Res., 2006, 21: 185 | [79] | Yao D, Liu X H, Liu X F, et al.Axial compressive deformation behaviors and constructive relation for lotus-type porous copper[J]. Chin. J. Nonferrous Met., 2008, 18: 1995(姚迪, 刘新华, 刘雪峰等. 藕状多孔铜轴向压缩变形行为与本构关系[J]. 中国有色金属学报, 2008, 18: 1995) | [80] | Mukai T, Miyoshi T, Nakano S, et al.Compressive response of a closed-cell aluminum foam at high strain rate[J]. Scr. Mater., 2006, 54: 533 | [81] | Wang Z H, Ma H W, Zhao L M, et al.Studies on the dynamic compressive properties of open-cell aluminum alloy foams[J]. Scr. Mater., 2006, 54: 83 | [82] | Tane M, Zhao F, Song Y H, et al.Formation mechanism of a plateau stress region during dynamic compression of porous iron: Interaction between oriented cylindrical pores and deformation twins[J]. Mater. Sci. Eng., 2014, A591: 150 | [83] | Tane M, Kawashima T, Yamada H, et al.Strain rate dependence of anisotropic compression behavior in porous iron with unidirectional pores[J]. J. Mater. Res., 2010, 25: 1179 | [84] | Song Y H, Tane M, Nakajima H.Peculiar formation mechanism of a plateau stress region during dynamic compressive deformation of porous carbon steel with oriented cylindrical pores[J]. Acta Mater., 2012, 60: 1149 | [85] | Song Y H, Tane M, Nakajima H.Appearance of a plateau stress region during dynamic compressive deformation of porous carbon steel with directional pores[J]. Scr. Mater., 2011, 64: 797 | [86] | Song Y H, Tane M, Nakajima H.Dynamic and quasi-static compression of porous carbon steel S30C and S45C with directional pores[J]. Mater. Sci. Eng., 2012, A534: 504 | [87] | Li W D, Jia H L, Pu C, et al.Cell wall buckling mediated energy absorption in lotus-type porous copper[J]. J. Mater. Sci. Technol., 2015, 31: 1018 | [88] | Li W D, Xu K, Li H H, et al.Energy absorption and deformation mechanism of lotus-type porous coppers in perpendicular direction[J]. J. Mater. Sci. Technol., 2017, 33: 1353 | [89] | Shapovalov V.Porous metals[J]. MRS Bull., 1994, 19: 24 | [90] | Ogushi T, Chiba H, Nakajima H, et al.Measurement and analysis of effective thermal conductivities of lotus-type porous copper[J]. J. Appl. Phys., 2004, 95: 5843 | [91] | Chiba H, Ogushi T, Nakajima H, et al.Steady state comparative-longitudinal heat flow method using specimen of different thicknesses for measuring thermal conductivity of lotus-type porous metals[J]. J. Appl. Phys., 2008, 103: 13515 | [92] | Chiba H, Ogushi T, Nakajima H.Heat transfer capacity of lotus-type porous copper heat sink for air cooling[J]. J. Therm. Sci. Technol., 2010, 5: 222 | [93] | Chiba H, Ogushi T, Nakajima H, et al.Heat transfer capacity of lotus-type porous copper heat sink[J]. JSME Int. J., 2004, 47B: 516 | [94] | Chen L T, Zhang H W, Liu Y, et al.Theoretical study on heat transfer performance of directioanlly solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48: 1374(陈刘涛, 张华伟, 刘源等. 定向凝固多孔铜热沉传热性能的理论分析[J]. 金属学报, 2012, 48: 1374) | [95] | Chen L T, Zhang H W, Liu Y, et al.Experimental research on heat transfer performance of directionanly solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48: 329(陈刘涛, 张华伟, 刘源等. 定向凝固多孔Cu热沉传热性能的实验研究[J]. 金属学报, 2012, 48: 329) | [96] | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electron Device. Lett., 1981, EDL-2: 126 | [97] | Chen L T.Study on heat transfer performance of directionally solidified porous copper microchannel heat sink [D]. Beijing: Tsinghua University, 2012(陈刘涛. 定向凝固多孔铜微通道热沉传热性能的研究 [D]. 北京: 清华大学, 2012) | [98] | Xie Z J, Ikeda T, Okuda Y, et al.Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2004, A386: 390 | [99] | Xie Z K, Tane M, Hyun S K, et al.Vibration-damping capacity of lotus-type porous magnesium[J]. Mater. Sci. Eng., 2006, A417: 129 | [100] | Tane M, Hyun S K, Nakajima H.Anisotropic electrical conductivity of lotus-type porous nickel[J]. J. Appl. Phys., 2005, 97: 103701 | [101] | Gu X N, Zhou W R, Zheng Y F, et al.Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material[J]. Mater. Lett., 2010, 64: 1871 | [102] | Higuchi Y, Ohashi Y, Nakajima H.Biocompatibility of lotus-type stainless steel and titanium in alveolar bone[J]. Adv. Eng. Mater., 2006, 8: 907 | [103] | Li Y X, Wu A P.Principle of Materials Processing [M]. Beijing: Tsinghua University Press, 2005: 81(李言祥, 吴爱萍. 材料加工原理 [M]. 北京: 清华大学出版社, 2005: 81) | [104] | Wang L.Melt hydrogenation and its influence on the structures and properties of titanium alloys [D]. Harbin: Harbin Institute of Technology, 2010(王亮. 钛合金液态气相置氢及其对组织和性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2010) | [105] | Sacris E M, Parlee N A D. The diffusion of hydrogen in liquid Ni, Cu, Ag, and Sn[J]. Metall. Trans., 1970, 1: 3377 | [106] | Sigrist F, Feichtinger H K, Marincek B.Eine neue station?re methode zur bestimmung des diffusionskoeffizienten von gasen in flüssigen metallen und legierungen[J]. Z. Phys. Chem., 1977, 107: 211 | [107] | Yang Q Q, Liu Y, Li Y X.Hydrogen diffusion coefficient in liquid metals evaluated by solid-gas eutectic unidirectional solidification[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 4030 | [108] | Li Y X, Liu B C.Initial composition transient during crystal growth[J]. Acta Metall. Sin., 1988, 24: 82(李言祥, 柳百成. 晶体生长的初始成分过渡区[J]. 金属学报, 1988, 24: 82) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|