Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 727-741    DOI: 10.11900/0412.1961.2018.00027
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
定向凝固多孔金属研究进展
李言祥1,2(), 刘效邦1
1 清华大学材料学院 北京 100084
2 先进成形制造教育部重点实验室(清华大学) 北京 100084
Directionally Solidified Porous Metals: A Review
Yanxiang LI1,2(), Xiaobang LIU1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
全文: PDF(4454 KB)   HTML
摘要: 

本文从凝固理论、凝固方法与装置、凝固体系、性能及应用等方面,综述了定向凝固多孔金属的研究进展。圆柱形气孔规则排列的多孔金属是通过定向凝固方法在加压气氛中利用金属/气体共晶反应制备的。通过控制凝固方向,不仅可以制备一维藕状多孔结构,还可以制备二维放射状多孔结构。参考经典的Jackson-Hunt共晶模型,建立了稳态凝固条件下金属-气体共晶定向凝固的理论模型,并且给出了考虑H2逸出和定向凝固多孔结构形成的工艺参数窗口。介绍了模铸法、连续铸造法和Bridgman型定向凝固法3种制备技术。重点介绍了定向凝固多孔结构制备过程中的2个重要进展:孔结构均匀的定向凝固多孔合金的制备以及高孔隙率定向凝固多孔Al的制备。圆柱形气孔规则排列使得定向凝固多孔金属在力、热、声以及渗透等方面具有特殊的性能优势,因此在轻质结构材料、热沉、过滤器和人工骨等领域具有广阔的应用前景。

关键词 多孔金属定向凝固金属/气体共晶Gasar藕状金属    
Abstract

This paper reviews the recent development of porous metals with directional pores, from the aspects of the solidification principle, fabrication method, properties and applications. This kind of porous metals is fabricated by a directional solidification process in pressurized gas atmosphere, utilizing a metal/gas eutectic reaction (Gasar). By controlling solidification direction, not only lotus-type porous structure but also radial-type porous structure can be produced. The coupled growth of solid/gas phases is discussed by applying a solution procedure similar to that in the classical Jackson-Hunt eutectic growth model. The working window considering hydrogen escape and the formation of directional solidification porous structure has been given. Three fabrication techniques including mold casting, continuous casting techniques and Bridgman-type directional solidification method are introduced. Two new progresses about the fabrication of directionally solidified porous structure are described in details: porous alloy with uniform directional pores and high-porosity directionally solidified porous aluminum. Since directionally solidified porous metals exhibit peculiar physical and mechanical properties such as light-weight, air and water permeability, and anisotropy of thermal and mechanical properties, they are suitable for applications in heat sinks, filters, biomaterials and so on.

Key wordsporous metal    directional solidification    metal/gas eutectic    Gasar    lotus-type metal
收稿日期: 2018-01-18     
ZTFLH:  TG249  
基金资助:资助项目 国家自然科学基金项目No.51371104
作者简介:

作者简介 李言祥,男,1962 年生,教授,博士

引用本文:

李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review. Acta Metall Sin, 2018, 54(5): 727-741.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00027      或      https://www.ams.org.cn/CN/Y2018/V54/I5/727

图1  Cu-H二元共晶相图(H2压力0.1 MPa,富Cu端)[18]
图2  H在几种纯金属中的溶解度与温度的关系(H2压力为0.1 MPa)[45]
图3  金属-气体共晶稳态凝固理论模型和对应的柱坐标系[17]
图4  不同H2和Ar气压力下Mg-H系气孔率预测结果与实验值的比较[34]
图5  气体总压对孔径和孔间距的影响(v=0.4 mm/s, T=1023 K)[17]
图6  Mg-H系共晶定向凝固过程中气体压力和过热度的工作窗口及优化线[50]
图7  Ar气压力对金属-H相图的影响示意图[50]
图8  二维放射状多孔Mg和多孔Cu的形貌图[51]
图9  普通模铸法制备定向凝固多孔金属的3种装置示意图
图10  Bridgman定向凝固装置示意图[37]
图11  定向凝固多孔Cu-Mn合金形貌[61]
图12  已报道的定向凝固多孔金属中气孔率随凝固速率变化的关系总结
图13  不同热流密度条件下定向凝固多孔Cu热沉传热性能的实验结果[97]
[1] Shapovalov V I.Method for manufacturing porous articles [P]. US Pat, 5181549, 1993
[2] Shapovalov V, Boyko L.Gasar—A new class of porous materials[J]. Adv. Eng. Mater., 2004, 6: 407
[3] Hyun S K, Murakami K, Nakajima H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2001, A299: 241
[4] Simone A E, Gibson L J.The tensile strength of porous copper made by the GASAR process[J]. Acta Mater., 1996, 44: 1437
[5] Ogushi T, Chiba H, Nakajima H.Development of lotus-type porous copper heat sink[J]. Mater. Trans., 2006, 47: 2240
[6] Zhang H W, Chen L T, Liu Y, et al.Experimental study on heat transfer performance of lotus-type porous copper heat sink[J]. Int. J. Heat Mass Transfer, 2013, 56: 172
[7] Liu Y, Chen H F, Zhang H W, et al.Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant[J]. Int. J. Heat Mass Transfer, 2015, 80: 605
[8] Alvarez K, Hyun S K, Nakano T, et al.In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats[J]. Mater. Sci. Eng., 2009, C29: 1182
[9] Du H, Qi J Z, Lao Y X, et al.Oil retaining capability and sliding friction behaviour of porous copper with elongated cylindrical pores[J]. J. Mater. Process. Technol., 2012, 212: 1796
[10] Boiko L V.Formation of porous structures in metal-hydrogen systems[J]. Mater. Sci., 2002, 38: 544
[11] Paradies C J, Tobin A, Wolla J.The effect of GASAR processing parameters on porosity and properties in aluminum alloy [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 297
[12] Apprill J M, Poirier D R, Maguire M C, et al.GASAR porous metals process control [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 291
[13] Yamamura S, Shiota H, Murakami K, et al.Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen[J]. Mater. Sci. Eng., 2001, A318: 137
[14] Nakajima H, Ikeda T, Hyun S K.Fabrication of lotus-type porous metals and their physical properties[J]. Adv. Eng. Mater., 2004, 6: 377
[15] Drenchev L, Sobczak J, Sobczak N, et al.A comprehensive model of ordered porosity formation[J]. Acta Mater., 2007, 55: 6459
[16] Liu Y, Li Y X.A theoretical study of Gasarite eutectic growth[J]. Scr. Mater., 2003, 49: 379
[17] Liu Y, Li Y X, Wan J, et al.Metal-gas eutectic growth during unidirectional solidification[J]. Metall. Mater. Trans., 2006, 37A: 2871
[18] Zhang H W, Li Y X, Liu Y.Study of metal-hydrogen binary phase diagram in Gasar process[J]. Acta Metall. Sin., 2005, 41: 55(张华伟, 李言祥, 刘源. Gasar工艺中金属-氢二元相图的研究[J]. 金属学报, 2005, 41: 55)
[19] Zhang H W, Li Y X, Liu Y.Gas pressure condition for obtaining uniform lotus-type porous structure by Gasar process[J]. Acta Metall. Sin., 2006, 42: 1171(张华伟, 李言祥, 刘源. Gasar工艺获得均匀藕状多孔结构的气压选择[J]. 金属学报, 2006, 42: 1171
[20] Zhang H W, Li Y X, Liu Y.Evaluation of porosity in lotus-type porous Cu fabricated with Gasar process[J]. Acta Metall. Sin., 2006, 42: 1165(张华伟, 李言祥, 刘源. 藕状规则多孔Cu气孔率的理论预测[J]. 金属学报, 2006, 42: 1165)
[21] Liu Y, Li Y X.Theoretical analysis of bubble nucleation in GASAR materials[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 830
[22] Zhang H W, Li Y X, Liu Y.The critical processing conditions for directional solidification of solid/gas eutectics[J]. Acta Metall. Sin., 2007, 43: 589(张华伟, 李言祥, 刘源. 固/气共晶定向凝固中的工艺判据[J]. 金属学报, 2007, 43: 589)
[23] Xie J X, Liu X H, Liu X F, et al.Fabrication and characterization of lotus-type porous pure copper bar[J]. Chin. J. Nonferrous Met., 2005, 15: 1869(谢建新, 刘新华, 刘雪峰等. 藕状多孔纯铜棒的制备与表征[J]. 中国有色金属学报, 2005, 15: 1869)
[24] Liu X H, Yao D, Liu X F, et al.Deformation behaviors and constructive relation of lotus-type porous copper under compressive direction perpendicular to pores[J]. Chin. J. Nonferrous Met., 2009, 19: 1237(刘新华, 姚迪, 刘雪峰等. 藕状多孔铜沿垂直于气孔方向的压缩变形行为与本构关系[J]. 中国有色金属学报, 2009, 19: 1237)
[25] Li Z J, Jin Q L, Yang T W, et al.A thermodynamic model for directional solidification of metal-hydrogen eutectic[J]. Acta Metall. Sin., 2014, 50: 507(李再久, 金青林, 杨天武等. 金属-氢共晶定向凝固热力学模型[J]. 金属学报, 2014, 50: 507)
[26] Li X M, Li W Q, Jin Q L, et al.A steady solution of the gasar eutectic growth in directional solidification[J]. Chin. Phys., 2013, 22B: 078101
[27] Du H, Song G H, Nakajima H, et al.Study on lotus-type porous copper electroplated with a Ni coating on inner surface of pores[J]. Appl. Surf. Sci., 2013, 264: 772
[28] Olga K, Xu Z B, Hai H, et al.Pore structure and mechanical properties of directionally solidified porous aluminum alloys[J]. China Foundry, 2014, 11: 1
[29] Park J S, Hyun S K, Suzuki S, et al.Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique[J]. Acta Mater., 2007, 55: 5646
[30] He Y, Li Y X, Zhang H W, et al.Influence of withdrawing speed on the porous structures of Gasar ingots fabricated by Bridgman method[J]. J. Mater. Process. Technol., 2017, 245: 106
[31] Onishi H, Hyun S K, Nakajima H.Effect of hydrogen pressure on moisture-based fabrication of lotus-type porous nickel[J]. Mater. Trans., 2006, 47: 2120
[32] Onishi H, Ueno S, Nakajima H.An effect of addition of NiO powder on pore formation in lotus-type porous nickel[J]. Mater. Trans., 2008, 49: 2670
[33] Liu Y, Li Y X, Zhang H W.Fabrication of lotus-structured porous magnesium with Gasar process[J]. Acta Metall. Sin., 2004, 40: 1121(刘源, 李言祥, 张华伟. 藕状多孔金属Mg的Gasar工艺制备[J]. 金属学报, 2004, 40: 1121)
[34] Liu Y, Li Y X, Wan J, et al.Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification[J]. Mater. Sci. Eng., 2005, A402: 47
[35] Yang Q Q, Liu Y, Li Y X, et al.Pore structure of unidirectional solidified lotus-type porous silicon[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3517
[36] Ide T, Iio Y, Nakajima H.Fabrication of porous aluminum with directional pores through continuous casting technique[J]. Metall. Mater. Trans., 2012, 43A: 5140
[37] Liu X B, Li Y X, He Y.Fabrication of high-porosity lotus-type porous aluminum in vacuum[J]. Metall. Mater. Trans., 2017, 48A: 1264
[38] Jiang G R, Li Y X, Liu Y.Experimental study on the pore structure of directionally solidified porous Cu-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 3405
[39] Jiang G R, Li Y X, Liu Y.Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 88
[40] Zhang X M, Li Y X, Liu Y, et al.Influence of the solidification temperature range on Gasar structures made from Cu-Mn alloys[J]. Int. J. Mater. Res., 2014, 105: 869
[41] Kashihara M, Suzuki S, Kawamura Y, et al.Fabrication of lotus-type porous carbon steel slabs by continuous casting technique in nitrogen atmosphere[J]. Metall. Mater. Trans., 2010, 41A: 2377
[42] Kashihara M, Yonetani H, Kobi T, et al.Fabrication of lotus-type porous carbon steel via continuous zone melting and its mechanical properties[J]. Mater. Sci. Eng., 2009, A524: 112
[43] Ikeda T, Aoki T. Nakajima H, Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property[J]. Metall. Mater. Trans., 2005, 36A: 77
[44] Park J S, Hyun S K, Suzuki S, et al.Fabrication of lotus-type porous Al-Si alloys using the continuous casting technique[J]. Metall. Mater. Trans., 2009, 40A: 406
[45] Zhang H W, Li Y X, Liu Y.Hydrogen solubility in pure metals for Gasar process[J]. Acta Metall. Sin., 2007, 43: 113(张华伟, 李言祥, 刘源. 氢在Gasar工艺常用纯金属中的溶解度[J]. 金属学报, 2007, 43: 113)
[46] Shapovalov V I.Formation of ordered gas-solid structures via solidification in metal-hydrogen systems [A]. Porous and Cellular Materials for Structural Applications[C]. California: Materials Research Society, 1998: 281
[47] Apprill J M.Process control of GASAR porous metals [D]. Arizona: The University of Arizona, 1998
[48] Campbell J.Complete Casting Handbook: Metal Casting Processes, Techniques and Design[M]. Oxford: Butterworth-Heinemann, 2011: 24
[49] Zhang H W, Li Y X.Study on bubble nucleation in liquid metal[J]. Acta Phys. Sin., 2007, 56: 4864(张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56: 4864)
[50] Zhang H W.Theoretical and experimental study on unidirectional solidification of metal-gas eutectics [D]. Beijing: Tsinghua University, 2006(张华伟. 金属-气体共晶定向凝固的研究 [D]. 北京: 清华大学, 2006)
[51] Wang X.Fabrication of radial-type porous metal by bidirectional solidification of metal-gas eutectics [D]. Beijing: Tsinghua University, 2008(王雪. 金属-气体共晶二维定向凝固制备放射状规则多孔金属 [D]. 北京: 清华大学, 2008)
[52] Wang X, Li Y X, Liu Y.Structural features in radial-type porous magnesium fabricated by radial solidification[J]. Mater. Sci. Eng., 2007, A444: 306
[53] Nakahata T, Nakajima H.Fabrication of lotus-type silver with directional pores by unidirectional solidification in oxygen atmosphere[J]. Mater. Trans., 2005, 46: 587
[54] Lee Y S, Hyun S K.Centrifugal casting for unpressurized fabrication of lotus-type porous copper[J]. Mater. Lett., 2012, 78: 92
[55] Hyun S K, Nakajima H.Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Lett., 2003, 57: 3149
[56] Hyun S K, Uchikoshi M, Mimura K, et al.Fabrication of porous high-purity iron with directional pores by continuous zone melting technique[J]. Mater. Trans., 2010, 51: 2076
[57] Sugiyama M, Hyun S K, Tane M, et al.Fabrication of lotus-type porous NiTi shape memory alloys using the continuous zone melting method and tensile property[J]. High Temp. Mater. Process., 2007, 26: 297
[58] He Y.Structural optimization of directionally solidified porous copper ingot [D]. Beijing: Tsinghua University, 2017(何蕴. 定向凝固多孔铜锭的结构优化 [D]. 北京: 清华大学, 2017)
[59] Jiang G R, Li Y X.A model for calculating hydrogen solubility in liquid transition metals[J]. Metall. Mater. Trans., 2011, 42A: 1038
[60] Jiang G R, Li Y X, Liu Y.Calculation of hydrogen solubility in molten alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1130
[61] Jiang G R.Study on hydrogen solubility in molten alloys and directional solidification of porous Cu-Mn alloy [D]. Beijing: Tsinghua University, 2010(蒋光锐. 氢在合金熔体中的溶解度与定向凝固多孔铜锰合金的研究 [D]. 北京: 清华大学, 2010)
[62] Hoshiyama H, Ikeda T, Nakajima H.Fabrication of lotus-type porous magnesium and its alloys by unidirectional solidification under hydrogen atmosphere[J]. High Temp. Mater. Process., 2007, 26: 303
[63] Zhang X M.Study on fabrication of bimodal porous metal by the Gasar and dealloying processes [D]. Beijing: Tsinghua University, 2013(张星明. Gasar-脱合金制备复合多孔金属的研究 [D]. 北京: 清华大学, 2013)
[64] Aoki T, Ikeda T, Nakajima H.Fabrication of lotus-type porous brass by zinc diffusion into porous copper[J]. Mater. Trans., 2003, 44: 89
[65] Ikeda T, Nakajima H.Titanium coating of lotus-type porous stainless steel by vapour deposition technique[J]. Mater. Lett., 2004, 58: 3807
[66] Du M, Zhang H W, Li Y X, et al.Depositing and alloying on the inner surface of Gasar Cu pores by plating and annealing treatment[J]. Appl. Surf. Sci., 2015, 342: 69
[67] Du M, Zhang H W, Li Y X.Inner surface alloying on pores of lotus-type porous copper through electroless plating with supersonic vibration and annealing treatment[J]. Surf. Coat. Technol., 2015, 261: 1
[68] Du M, Zhang H W, Li Y X, et al.Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: Influences of preparation conditions[J]. Appl. Surf. Sci., 2016, 360: 148
[69] Du M, Zhang H W, Li Y X, et al.Fabrication and wettability of monolithic bimodal porous Cu with Gasar macro-pores and dealloying nano-pores[J]. Appl. Surf. Sci., 2015, 353: 804
[70] Yang Q Q, Liu Y, Li Y X.Modeling and simulation of structural formation of porous aluminum in Gasar solidification[J]. Acta Metall. Sin., 2014, 50: 1403(杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50: 1403)
[71] Kim S Y, Park J S, Nakajima H.Fabrication of lotus-type porous aluminum through thermal decomposition method[J]. Metall. Mater. Trans., 2009, 40A: 937
[72] Kumar G S V, Mukherjee M, Garcia-Moreno F, et al. Reduced-pressure foaming of aluminum alloys[J]. Metall. Mater. Trans., 2013, 44A: 419
[73] Shapovalov V I.Prospects of the application of hydrogen as an alloying element[J]. Mater. Sci., 1994, 30: 419
[74] Xiang Y B.Mechanical properties of unidirectionally solidified regular porous magnesium [D]. Beijing: Tsinghua University, 2006(项亦斌. 一维定向凝固规则多孔镁力学性能研究 [D]. 北京: 清华大学, 2006)
[75] Hyun S K, Ikeda T, Nakajima H.Fabrication of lotus-type porous iron and its mechanical properties[J]. Sci. Technol. Adv. Mater., 2004, 5: 201
[76] Simone A E, Gibson L J.Efficient structural components using porous metals[J]. Mater. Sci. Eng., 1997, A229: 55
[77] Hyun S K, Nakajima H.Anisotropic compressive properties of porous copper produced by unidirectional solidification[J]. Mater. Sci. Eng., 2003, A340: 258
[78] Ide T, Tane M, Ikeda T, et al.Compressive properties of lotus-type porous stainless steel[J]. J. Mater. Res., 2006, 21: 185
[79] Yao D, Liu X H, Liu X F, et al.Axial compressive deformation behaviors and constructive relation for lotus-type porous copper[J]. Chin. J. Nonferrous Met., 2008, 18: 1995(姚迪, 刘新华, 刘雪峰等. 藕状多孔铜轴向压缩变形行为与本构关系[J]. 中国有色金属学报, 2008, 18: 1995)
[80] Mukai T, Miyoshi T, Nakano S, et al.Compressive response of a closed-cell aluminum foam at high strain rate[J]. Scr. Mater., 2006, 54: 533
[81] Wang Z H, Ma H W, Zhao L M, et al.Studies on the dynamic compressive properties of open-cell aluminum alloy foams[J]. Scr. Mater., 2006, 54: 83
[82] Tane M, Zhao F, Song Y H, et al.Formation mechanism of a plateau stress region during dynamic compression of porous iron: Interaction between oriented cylindrical pores and deformation twins[J]. Mater. Sci. Eng., 2014, A591: 150
[83] Tane M, Kawashima T, Yamada H, et al.Strain rate dependence of anisotropic compression behavior in porous iron with unidirectional pores[J]. J. Mater. Res., 2010, 25: 1179
[84] Song Y H, Tane M, Nakajima H.Peculiar formation mechanism of a plateau stress region during dynamic compressive deformation of porous carbon steel with oriented cylindrical pores[J]. Acta Mater., 2012, 60: 1149
[85] Song Y H, Tane M, Nakajima H.Appearance of a plateau stress region during dynamic compressive deformation of porous carbon steel with directional pores[J]. Scr. Mater., 2011, 64: 797
[86] Song Y H, Tane M, Nakajima H.Dynamic and quasi-static compression of porous carbon steel S30C and S45C with directional pores[J]. Mater. Sci. Eng., 2012, A534: 504
[87] Li W D, Jia H L, Pu C, et al.Cell wall buckling mediated energy absorption in lotus-type porous copper[J]. J. Mater. Sci. Technol., 2015, 31: 1018
[88] Li W D, Xu K, Li H H, et al.Energy absorption and deformation mechanism of lotus-type porous coppers in perpendicular direction[J]. J. Mater. Sci. Technol., 2017, 33: 1353
[89] Shapovalov V.Porous metals[J]. MRS Bull., 1994, 19: 24
[90] Ogushi T, Chiba H, Nakajima H, et al.Measurement and analysis of effective thermal conductivities of lotus-type porous copper[J]. J. Appl. Phys., 2004, 95: 5843
[91] Chiba H, Ogushi T, Nakajima H, et al.Steady state comparative-longitudinal heat flow method using specimen of different thicknesses for measuring thermal conductivity of lotus-type porous metals[J]. J. Appl. Phys., 2008, 103: 13515
[92] Chiba H, Ogushi T, Nakajima H.Heat transfer capacity of lotus-type porous copper heat sink for air cooling[J]. J. Therm. Sci. Technol., 2010, 5: 222
[93] Chiba H, Ogushi T, Nakajima H, et al.Heat transfer capacity of lotus-type porous copper heat sink[J]. JSME Int. J., 2004, 47B: 516
[94] Chen L T, Zhang H W, Liu Y, et al.Theoretical study on heat transfer performance of directioanlly solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48: 1374(陈刘涛, 张华伟, 刘源等. 定向凝固多孔铜热沉传热性能的理论分析[J]. 金属学报, 2012, 48: 1374)
[95] Chen L T, Zhang H W, Liu Y, et al.Experimental research on heat transfer performance of directionanly solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48: 329(陈刘涛, 张华伟, 刘源等. 定向凝固多孔Cu热沉传热性能的实验研究[J]. 金属学报, 2012, 48: 329)
[96] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electron Device. Lett., 1981, EDL-2: 126
[97] Chen L T.Study on heat transfer performance of directionally solidified porous copper microchannel heat sink [D]. Beijing: Tsinghua University, 2012(陈刘涛. 定向凝固多孔铜微通道热沉传热性能的研究 [D]. 北京: 清华大学, 2012)
[98] Xie Z J, Ikeda T, Okuda Y, et al.Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2004, A386: 390
[99] Xie Z K, Tane M, Hyun S K, et al.Vibration-damping capacity of lotus-type porous magnesium[J]. Mater. Sci. Eng., 2006, A417: 129
[100] Tane M, Hyun S K, Nakajima H.Anisotropic electrical conductivity of lotus-type porous nickel[J]. J. Appl. Phys., 2005, 97: 103701
[101] Gu X N, Zhou W R, Zheng Y F, et al.Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material[J]. Mater. Lett., 2010, 64: 1871
[102] Higuchi Y, Ohashi Y, Nakajima H.Biocompatibility of lotus-type stainless steel and titanium in alveolar bone[J]. Adv. Eng. Mater., 2006, 8: 907
[103] Li Y X, Wu A P.Principle of Materials Processing [M]. Beijing: Tsinghua University Press, 2005: 81(李言祥, 吴爱萍. 材料加工原理 [M]. 北京: 清华大学出版社, 2005: 81)
[104] Wang L.Melt hydrogenation and its influence on the structures and properties of titanium alloys [D]. Harbin: Harbin Institute of Technology, 2010(王亮. 钛合金液态气相置氢及其对组织和性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[105] Sacris E M, Parlee N A D. The diffusion of hydrogen in liquid Ni, Cu, Ag, and Sn[J]. Metall. Trans., 1970, 1: 3377
[106] Sigrist F, Feichtinger H K, Marincek B.Eine neue station?re methode zur bestimmung des diffusionskoeffizienten von gasen in flüssigen metallen und legierungen[J]. Z. Phys. Chem., 1977, 107: 211
[107] Yang Q Q, Liu Y, Li Y X.Hydrogen diffusion coefficient in liquid metals evaluated by solid-gas eutectic unidirectional solidification[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 4030
[108] Li Y X, Liu B C.Initial composition transient during crystal growth[J]. Acta Metall. Sin., 1988, 24: 82(李言祥, 柳百成. 晶体生长的初始成分过渡区[J]. 金属学报, 1988, 24: 82)
[1] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[2] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[4] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[5] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[6] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[7] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[8] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[9] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[10] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[11] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[12] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[13] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[14] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[15] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.