|
|
微纳米尺度金属导电材料热疲劳研究进展 |
张广平1( ), 陈红蕾1,2, 罗雪梅1, 张滨3 |
1中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016 2中国科学技术大学材料科学与工程学院 沈阳 110016 3 东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室 沈阳 110819 |
|
Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors |
Guangping ZHANG1( ), Honglei CHEN1,2, Xuemei LUO1, Bin ZHANG3 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
Guangping ZHANG,
Honglei CHEN,
Xuemei LUO,
Bin ZHANG.
Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. Acta Metall Sin, 2018, 54(3): 357-366.
[1] | Ceric H, Selberherr S.Electromigration in submicron interconnect features of integrated circuits[J]. Mater. Sci. Eng., 2011, R71: 53 | [2] | Burghartz J N.Guide to State-of-the-Art Electron Devices[M]. Stuttgart, Germany: John Wiley & Sons, Ltd, 2013: 72 | [3] | Schaller R R.Moore's law: Past, present, and future[J]. IEEE Spectrum, 1997, 34: 52 | [4] | Murarka S P. Advanced materials for future interconnections of the future need and strategy: Invited lecture [J]. Microelectron. Eng., 1997, 37-38: 29 | [5] | Song D Y, Zong X P, Sun R X, et al.Copper interconnections for IC and studies on related problems[J]. Semicond. Technol., 2001, 26(2): 29(宋登元, 宗晓萍, 孙荣霞等. 集成电路铜互连线及相关问题的研究 [J]. 半导体技术, 2001, 26(2): 29) | [6] | Lu Q J, Zhu Z M, Yang Y T, et al.Analysis of propagation delay and repeater insertion in single-walled carbon nanotube bundle interconnects[J]. Microelectron. J., 2016, 54: 85 | [7] | Aceros J C, McGruer N E, Adams G G. Microelectromechanical system microhotplates for reliability testing of thin films and nanowires[J]. J. Vac. Sci. Technol., 2008, 26B: 918 | [8] | Chen D L, Chen T C, Yang P F, et al.Thermal resistance of side by side multi-chip package: Thermal mode analysis[J]. Microelectron. Reliab., 2015, 55: 822 | [9] | MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality [J]. Science, 2016, 353: aaf2093 | [10] | Hwang S W, Tao H, Kim D H, et al.A physically transient form of silicon electronics[J]. Science, 2012, 337: 1640 | [11] | Sch?fer D, Mardare C C, Savan A, et al.High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction[J]. Anal. Chem., 2011, 83: 1916 | [12] | Li X T, Tong H Y, Zhao Y, et al.Structures, mechanical properties and applications of flexible electronic components[J]. Mech. Eng., 2015, 37: 295(李学通, 仝洪月, 赵越等. 柔性电子器件的应用、结构、力学及展望 [J]. 力学与实践, 2015, 37: 295) | [13] | Kim D H, Viventi J, Amsden J J, et al.Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nat. Mater., 2010, 9: 511 | [14] | Kim D H, Lu N S, Ghaffari R, et al.Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy[J]. Nat. Mater., 2011, 10: 316 | [15] | Ko H C, Stoykovich M P, Song J Z, et al.A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454: 748 | [16] | Lee J, Wu J, Shi M X, et al.Stretchable GaAs photovoltaics with designs that enable high areal coverage[J]. Adv. Mater., 2011, 23: 986 | [17] | Keller R R, M?nig R, Volkert C A, et al.Interconnect failure due to cyclic loading[J]. AIP Conf. Proc., 2002, 612: 119 | [18] | Keller R R, Geiss R H, Cheng Y W, et al.Microstructure evolution during electric current induced thermomechanical fatigue of interconnects [A]. Materials Research Society Symposium Proceedings: Materials, Technology, and Reliability of Advanced Interconnects[C]. San Francisco, CA: Material Research Society, 2005, 863: 295 | [19] | Philofsky E, Ravi K, Hall E, et al.Surface reconstruction of aluminum metallization-a new potential wearout mechanism [A]. Proceedings of the 9th Annual Reliability Physics Symposium[C]. Las Vegas, U.S.A: IEEE, 1971: 120 | [20] | Romig A D Jr, Dugger M T, McWhorter P J. Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability[J]. Acta Mater., 2003, 51: 5837 | [21] | Iacopi F, Brongersma S H, Vandevelde B, et al.Challenges for structural stability of ultra-low-k-based interconnects[J]. Microelectron. Eng., 2004, 75: 54 | [22] | Zhang G P, Schwaiger R, Volkert C A, et al.Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films[J]. Philos. Mag. Lett., 2003, 83: 477 | [23] | Zhang G P, Volkert C A, Schwaiger R, et al.Length-scale-controlled fatigue mechanisms in thin copper films[J]. Acta Mater., 2006, 54: 3127 | [24] | Zhang G P, Volkert C A, Schwaiger R, et al.Damage behavior of 200-nm thin copper films under cyclic loading[J]. J. Mater. Res., 2005, 20: 201 | [25] | Zhang G P, Wang Z G.Progress in fatigue of small dimensional materials[J]. Acta Metall. Sin., 2005, 41: 1(张广平, 王中光. 小尺度材料的疲劳研究进展 [J]. 金属学报, 2005, 41: 1) | [26] | M?nig R, Keller R R, Volkert C A.Thermal fatigue testing of thin metal films[J]. Rev. Sci. Instrum., 2004, 75: 4997 | [27] | Barbosa N, Keller R R, Read D T, et al.Comparison of electrical and microtensile evaluations of mechanical properties of an aluminum film[J]. Metall. Mater. Trans., 2007, 38A: 2160 | [28] | Heinz W, Pippan R, Dehm G.Investigation of the fatigue behavior of Al thin films with different microstructure[J]. Mater. Sci. Eng., 2010, A527: 7757 | [29] | Heinz W, Dehm G.Grain resolved orientation changes and texture evolution in a thermally strained Al film on Si substrate[J]. Surf. Coat. Technol., 2011, 206: 1850 | [30] | Bigl S, Wurster S, Cordill M J, et al.Advanced characterisation of thermo-mechanical fatigue mechanisms of different copper film systems for wafer metallizations[J]. Thin Solid Films, 2016, 612: 153 | [31] | Eve S, Huber N, Kraft O, et al.Development and validation of an experimental setup for the biaxial fatigue testing of metal thin films[J]. Rev. Sci. Instrum., 2006, 77: 103902 | [32] | Tan C M, Roy A.Electromigration in ULSI interconnects[J]. Mater. Sci. Eng., 2007, A58: 1 | [33] | M?nig R.Thermal fatigue of Cu thin films [D]. Stuttgart: Universit?t Stuttgart, 2005 | [34] | Park Y B, M?nig R, Volkert C A.Thermal fatigue as a possible failure mechanism in copper interconnects[J]. Thin Solid Films, 2006, 504: 321 | [35] | Park Y B, M?nig R, Volkert C A.Frequency effect on thermal fatigue damage in Cu interconnects[J]. Thin Solid Films, 2007, 515: 3253 | [36] | Barbosa III N, Slifka A J.Spatially and temporally resolved thermal imaging of cyclically heated interconnects by use of scanning thermal microscopy[J]. Microsc. Res. Tech., 2008, 71: 579 | [37] | Zhang J, Zhang J Y, Liu G, et al.Unusual thermal fatigue behaviors in 60 nm thick Cu interconnects[J]. Scr. Mater., 2009, 60: 228 | [38] | Sun L J, Ling X, Li X D.Alternating-current induced thermal fatigue of gold interconnects with nanometer-scale thickness and width[J]. Rev. Sci. Instrum., 2011, 82: 103903 | [39] | Wang M, Zhang B, Liu C S, et al.Study on thermal fatigue failure of thin gold film with alternating current loading[J]. Acta Metall. Sin., 2011, 47: 601(王鸣, 张滨, 刘常升等. 交流电作用下Au薄膜热疲劳失效行为的研究 [J]. 金属学报, 2011, 47: 601) | [40] | Wang M, Zhang B, Zhang G P, et al.Scaling of reliability of gold interconnect lines subjected to alternating current[J]. Appl. Phys. Lett., 2011, 99: 011910 | [41] | Luo X M, Zhang B, Zhang G P.Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current[J]. J. Appl. Phys., 2014, 116: 103509 | [42] | Keller R R, Strus M C, Chiaramonti A N, et al.Reliability testing of advanced interconnect materials[J]. AIP Conf. Proc., 2011, 1395: 259 | [43] | M?nig R, Park Y B, Volkert C A.Thermal fatigue in copper interconnects[J]. AIP Conf. Proc., 2006, 817: 147 | [44] | Wang M.Thermal fatigue behavior of Au interconnect lines induced by alternating current and its size effect [D]. Shenyang: Northeastern University, 2011(王鸣. 交流电诱发Au互连线热疲劳行为及其尺寸效应 [D]. 沈阳: 东北大学, 2011) | [45] | Wang M, Zhang B, Zhang G P, et al.Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines[J]. Scr. Mater., 2009, 60: 803 | [46] | Luká? P, Kunz L.Effect of grain size on the high cycle fatigue behaviour of polycrystalline copper[J]. Mater. Sci. Eng., 1987, 85: 67 | [47] | Wang D, Volkert C A, Kraft O.Effect of length scale on fatigue life and damage formation in thin Cu films[J]. Mater. Sci. Eng., 2008, A493: 267 | [48] | Keller R R, Geiss R H, Cheng Y W, et al.Electric current induced thermomechanical fatigue testing of interconnects[J]. AIP Conf. Proc., 2005, 788: 491 | [49] | Geiss R H, Read D T.Defect behavior in aluminum interconnect lines deformed thermomechanically by cyclic joule heating[J]. Acta Mater., 2008, 56: 274 | [50] | Zhang G P, M?nig R, Park Y B, et al.Thermal fatigue failure analysis of copper interconnects under alternating currents [A]. Proceedings of the 2005 6th International Conference on Electronic Packaging Technology[C]. Shenzhen, China: IEEE, 2005: 1 | [51] | Balk T J, Dehm G, Arzt E.Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films[J]. Acta Mater., 2003, 51: 4471 | [52] | Chen E Y, Starke E A Jr. The effect of ion plating on the low cycle fatigue behavior of copper single crystals[J]. Mater. Sci. Eng., 1976, 24: 209 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|