Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 174-192    DOI: 10.11900/0412.1961.2017.00418
  本期目录 | 过刊浏览 |
镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究
熊守美1,2(), 杜经莲1, 郭志鹏1, 杨满红1, 吴孟武1, 毕成1, 曹永友1
1清华大学材料科学与工程学院 北京 100084
2清华大学先进成形制造教育部重点实验室 北京 100084
Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys
Shoumei XIONG1,2(), Jinglian DU1, Zhipeng GUO1, Manhong YANG1, Mengwu WU1, Cheng BI1, Yongyou CAO1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
引用本文:

熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. Acta Metall Sin, 2018, 54(2): 174-192.

全文: PDF(16999 KB)   HTML
摘要: 

本文系统介绍了镁合金压铸界面换热行为以及凝固微观组织结构的实验表征及计算模拟方面的研究进展,包括:(1) 一种基于换热系数的边界设定模型,由此发现了压铸界面换热系数可以分为初始升高、高值维持、快速下降及低值保持4个阶段;(2) 压室预结晶流动分布预测模型,据此得到了压室预结晶组织的主要分布规律及其对镁合金铸件缺陷带形成的影响;(3) 考虑压室预结晶组织的压铸镁合金形核模型及生长模型;(4) 结合离异共晶形核及生长机制建立的镁合金压铸工艺条件下微观组织演变的数学模型;(5) 镁合金枝晶组织的三维形貌和生长取向的研究,发现镁合金枝晶组织呈现十八个分支的形貌特征,分别沿着基面的<112?0>方向和非基面的<112?3>方向生长,由此建立了镁合金枝晶各向异性的生长模型,实现了镁合金枝晶组织的三维模拟研究。

关键词 镁合金压力铸造界面传热凝固微观组织    
Abstract

Magnesium alloys are widely used in various fields because of their outstanding properties. High-pressure die casting (HPDC) is one of the primary manufacturing methods of magnesium alloys. During the HPDC process, the solidification manner of casting is highly dependent on the heat transfer behavior at metal-die interface, which directly affects the solidified microstructure evolution, defect distribution and mechanical properties of the cast products. As common solidified microstructures of die cast magnesium alloys, the externally solidified crystals (ESCs), divorced eutectics and primary dendrites have important influences on the final performance of castings. Therefore, investigations on the interfacial heat transfer behavior and the solidified microstructures of magnesium alloys have considerable significance on the optimization of die-casting process and the prediction of casting quality. In this paper, recent research progress on theoretical simulation and experimental characterization of the heat transfer behaviors and the solidified microstructures of die cast magnesium alloys was systematically presented. The contents include:(1) A boundary-condition model developed based on the interfacial heat transfer coefficients (IHTCs), which could precisely simulate the boundary condition at the metal-die interface during solidification process. Accordingly, the IHTCs can be divided into four stages, namely the initial increasing stage, the high value maintaining stage, the fast decreasing stage and the low value maintaining stage. (2) A numerical model developed to simulate and predict the flow patterns of the externally solidified crystals (ESCs) in the shot sleeve during mold filling process, together with discussion on the influence of the ESCs distribution on the defect bands of die cast magnesium alloys. (3) Nucleation and growth models of the primary α-Mg phases developed by considering the ESCs in the shot sleeve. (4) Nucleation and growth models of the divorced eutectic phase, which can be used to simulate the microstructure evolution of die cast magnesium alloys. (5) The 3D morphology and orientation selection of magnesium alloy dendrite. It was found that magnesium alloy dendrite exhibits an eighteen-primary branch pattern in 3D, with six growing along <112?0> in the basal plane and the other twelve along <112?3> in non-basal planes. Accordingly, an anisotropy growth function was developed and coupled into the phase field model to achieve the 3D simulation of magnesium alloy dendrite.

Key wordsmagnesium alloy    high pressure die casting    interfacial heat transfer    solidified microstructure
收稿日期: 2017-10-09     
基金资助:国家重点研发计划项目No.2016YFB0301001,国家自然科学基金项目No.51701104,以及中国博士后科学基金项目No.2017M610884
作者简介:

作者简介 熊守美,男,1966年生,教授,博士

图1  阶梯和手指状铸件的结构、几何尺寸与实际压铸件[12]
图 2  压室几何形状和边界条件[57]
Material λc
Wm-1-1
ρ
kgm-3
cp
Jkg-1-1
TL
TS
Lcr
Jkg-1
AM50 62 1780 1050 628 546 373000
ADC12 92 2700 963 587 531 389000
H13 31.2-0.013 T 7730-0.24 T 478-0.219 T 1471 1404 209350
表1  实验采用材料的热物性参数[16,17,18,19,20]
图3  换热系数h与固相分数fs变化关系[20]
图4  常规压铸条件A380和AZ91D合金单个循环下压室不同位置的界面换热系数[1]
图5  镁合金压铸件表层及中心典型显微组织,“阶梯”压铸件截面厚度方向ESCs含量的统计分布图[44]
图6  不同时刻ESCs在不同截面上的分布[45]
Parameter Value Unit
Eutectic temperature (TE) 710 K
Eutectic composition (CE) 32.3 Mass fraction, %
Solute concentration of α phase (Cα0) 12.7 Mass fraction, %
Solute concentration of β phase (Cβ0) 40.2 Mass fraction, %
Volume fraction of α phase (fα) 0.31
Volume fraction of β phase (fβ) 0.69
Liquid slope of α phase (mα) -6.59 K%-1 (mass fraction)
Liquid slope of β phase (mβ) 2.15 K%-1 (mass fraction)
Solute diffusion coefficient in liquid (DL) 3×10-9 m2s-1
Gibbs-Thamson's coefficient of α phase (Γα) 1.5×10-7 mK
Gibbs-Thamson's coefficient of β phase (Γβ) 1.5×10-7 mK
表2  模拟算例中Mg-Al共晶成分合金的热物性参数取值[50,53]
图 7  AM60B镁合金压铸件中心区域微观组织结构的演变、模拟结果与实验结果的对比[50]
图8  镁合金AZ91铸锭组织及Mg-30%Gd合金铸态和淬火态微观组织
图9  重构所得Mg-30%Sn和Mg-30%Gd合金三维枝晶形貌[33]
图 10  基于EBSD的Mg-30%Gd合金枝晶生长方向标定[33]
图11  不同取向视图下α-Mg十八分支枝晶模拟与Mg-30%Sn重构枝晶形貌的对比[29]
图12  金属Mg低指数晶面对应的原子密度,低指数原子密排面晶面间距,镁合金枝晶优先生长方向对应的晶向角锥体方向示意图[33]
图13  金属Mg及其合金在4种不同势函数下各晶面的表面能及预测形貌[39,40]
[1] Yu W B, Cao Y Y, Li X B, et al.Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy[J]. J. Mater. Sci. Technol., 2017, 33: 52
[2] Yang W C, Liu L, Zhang J, et al.Insight into the partial solutionisation of a high pressure die-cast Al-Mg-Zn-Si alloy for mechanical property enhancement[J]. Mater. Sci. Eng., 2017, A682: 85
[3] Bi C, Guo Z P, Xiong S M.Modelling and simulation for die casting mould filling process using Cartesian cut cell approach[J]. Int. J. Cast. Metall. Res., 2015, 28: 234
[4] Wang Q L, Xiong S M.Vacuum assisted high-pressure die casting of AZ91D magnesium alloy at different slow shot speeds[J]. Trans. Nonferrous Met. Soc., 2014, 24: 3051
[5] Liu B C, Xiong S M.High pressure die casting process of magnesium alloys and its modeling and simulation for automobile industry[J]. J. Automot. Safety Energy, 2011, 2(1): 1(柳百成, 熊守美. 汽车工业镁合金压铸成形技术及模拟仿真[J]. 汽车安全与节能学报, 2011, 2(1): 1)
[6] Xu N, Bao Y F, Shen J.Enhanced strength and ductility of high pressure die casting AZ91D Mg alloy by using cold source assistant friction stir processing[J]. Mater. Lett., 2017, 190: 24
[7] Yu W B, Cao Y Y, Guo Z P, et al.Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition[J]. China Foundry, 2016, 13: 269
[8] Xiong S S, Su S F.Research progress on processing technology of magnesium alloys[J]. Foundry, 2005, 54(1): 20(熊守美, 苏仕方. 镁合金成形技术研究进展[J]. 铸造, 2005, 54(1): 20)
[9] Guan R G, Cipriano A F, Zhao Z Y, et al.Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications-alloy processing, microstructure, mechanical properties, and biodegradation[J]. Mater. Sci. Eng., 2013, C33: 3661
[10] Guo Z P, Xiong S M, Li M, et al.Relationship between metal-die interfacial heat transfer coefficient and casting solidification rate in high pressure die casting process[J]. Acta Metall. Sin., 2009, 45: 102(郭志鹏, 熊守美, 李梅等. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45: 102)
[11] Guo Z P, Xiong S M, Cao S X, et al.Effects of alloy materials and process parameters on the heat transfer coefficient at metal/die interface in high pressure die casting[J]. Acta Metall. Sin., 2008, 44: 433(郭志鹏, 熊守美, 曹尚铉等. 合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响[J]. 金属学报, 2008, 44: 433)
[12] Cao Y Y, Guo Z P, Xiong S M.Determination of interfacial heat transfer coefficient and its application in high pressure die casting process[J]. China Foundry, 2014, 11: 314
[13] Jia L R, Xiong S M, Liu B B.Study on numerical simulation of mold filling and heat transfer in die casting process[J]. J. Mater. Sci. Technol., 2000, 18: 269
[14] Guo Z P, Xiong S M, Cho S, et al.Interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy[J]. Front. Mech. Eng. China, 2007, 2: 283
[15] Guo Z P, Xiong S M, Liu B C, et al.Understanding of the influence of process parameters on the heat transfer behavior at the metal/die interface in high pressure die casting process[J]. Sci. China, 2009, 52E: 172
[16] Guo Z P, Xiong S M, Cho S, et al.Heat transfer between casting and die during high pressure die casting process of AM50 alloy-modeling and experimental results[J]. J. Mater. Sci. Technol., 2008, 24: 131
[17] Guo Z P, Xiong S M, Murakami M, et al.Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy[J]. China Foundry, 2007, 4: 5
[18] Guo Z P, Xiong S M, Cho S, et al. Influence of processing parameters on interfacial heat transfer coefficient at the metal-die interface of die cast AM50 alloy [J]. Mater. Sci. Forum, 2007, 561-565: 1007
[19] Guo Z P, Xiong S M, Liu B C, et al.Effect of process parameters, casting thickness, and alloys on the interfacial heat-transfer coefficient in the high-pressure die-casting process[J]. Metall. Mater. Trans., 2008, 39A: 2896
[20] Guo Z P, Xiong S M, Liu B C, et al.Determination of the heat transfer coefficient at metal-die interface of high pressure die casting process of AM50 alloy[J]. Int. J. Heat Mass Transer, 2008, 51: 6032
[21] Sandl?bes S, Friák M, Zaefferer S, et al.The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J]. Acta Mater., 2012, 60: 3011
[22] Sandl?bes S, Pei Z, Friák M, et al.Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties[J]. Acta Mater., 2014, 70: 92
[23] B?ttger B, Eiken J, Ohno M, et al.Controlling microstructure in magnesium alloys: A combined thermodynamic, experimental and simulation approach[J]. Adv. Eng. Mater., 2006, 8: 241
[24] Xiong S M, Liu B C.Study on numerical simulation of mold-filling and solidification processes of shaped casting[J]. Chin. J. Mech. Eng., 1999, 1: 4
[25] Kleiner S, Beffort O, Wahlen A, et al.Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys[J]. J. Light Met., 2002, 2: 277
[26] Pettersen K, Lohne O, Ryum N.Dendritic solidification of magnesium alloy AZ91[J]. Metall. Trans., 1990, 21A: 221
[27] Cai B, Wang J, Kao A, et al.4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification[J]. Acta Mater., 2016, 117: 160
[28] Nestler B, Garcke H, Stinner B.Multicomponent alloy solidification: Phase-field modeling and simulations[J]. Phys. Rev. 2005, 71E: 041609
[29] Yang M H, Xiong S M, Guo Z P.Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys[J]. Acta Mater., 2016, 112: 261
[30] Lu K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nat. Rev. Mater., 2016, 1: 16019
[31] Wang M Y, Xu Y J, Zheng Q W, et al.Dendritic growth in mg-based alloys: Phase-field simulations and experimental verification by X-ray synchrotron tomography[J]. Metall. Mater. Trans., 2014, 45A: 2562
[32] Shuai S S, Guo E Y, Phillion A B, et al.Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of MgSn alloys[J]. Acta Mater., 2016, 118: 260
[33] Yang M H, Xiong S M, Guo Z P.Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling[J]. Acta Mater., 2015, 92: 8
[34] Wu M W, Xiong S M.A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy[J]. Acta Metall. Sin.(Eng. Lett.), 2012, 25: 169
[35] Nie J F, Oh-ishi K, Gao X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy[J]. Acta Mater., 2008, 56: 6061
[36] Casari D, Mirihanage W U, Falch K V, et al.α-Mg primary phase formation and dendritic morphology transition in solidification of a Mg-Nd-Gd-Zn-Zr casting alloy[J]. Acta Mater., 2016, 116: 177
[37] Guo E Y, Phillion A B, Cai B, et al.Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography[J]. Acta Mater., 2017, 123: 373
[38] Xu Q Y, Feng W M, Liu B C, et al.Numerical simulation of dendrite growth of aluminum alloy[J]. Acta Metall. Sin., 2002, 38: 799(许庆彦, 冯伟明, 柳百成等. 铝合金枝晶生长的数值模拟[J]. 金属学报, 2002, 38: 799)
[39] Du J L, Guo Z P, Yang M H, et al.Growth pattern and orientation selection of magnesium alloy dendrite: From 3-D experimental characterization to theoretical atomistic simulation[J]. Mater. Today Commu., 2017, 13: 155
[40] Du J L, Guo Z P, Zhang A, et al.Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys[J]. Sci. Rep., 2017, 7: 13600
[41] Du J L, Guo Z P, Yang M H, et al.Multiscale simulation of α-Mg dendrite growth via 3D phase field modeling and ab-initio first-principle calculations [A]. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering[C]. Cham: Springer, 2017: 263
[42] Li X B, Xiong S M, Guo Z P.On the porosity induced by externally solidified crystals in high-pressure die-cast of AM60B alloy and its effect on crack initiation and propagation[J]. Mater. Sci. Eng., 2015, A633: 35
[43] Wu M W, Xiong S M.Microstructure characteristics of high pressure die cast AM60B magnesium alloy[J]. Rare Met. Mater. Eng., 2012, 41: 1580(吴孟武, 熊守美. 压铸镁合金AM60B的微观组织特征[J]. 稀有金属材料与工程, 2012, 41: 1580)
[44] Wu M W, Xiong S M.Experimental and modeling studies on the structure formation of high pressure die cast magnesium alloy considering the externally solidified crystals in the shot sleeve[J]. Acta Metall. Sin., 2011, 47: 528(吴孟武, 熊守美. 考虑压室预结晶的镁合金压铸组织实验及模拟研究[J]. 金属学报, 2011, 47: 528)
[45] Bi C, Xiong S M, Li X B, et al.Development of a fluid-particle model in simulating the motion of external solidified crystals and the evolution of defect bands in high-pressure die casting[J]. Metall. Mater. Trans., 2016, 47B: 939
[46] Li X B, Xiong S M, Guo Z P.On the tensile failure induced by defect band in high pressure die casting of AM60B magnesium alloy[J]. Mater. Sci. Eng., 2016, A674: 687
[47] Li X B, Xiong S M, Guo Z P.Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy[J]. J. Mater. Sci. Technol., 2016, 231: 1
[48] Li X B, Xiong S M, Guo Z P.Correlation between porosity and fracture mechanism in high pressure die casting of AM60B Alloy[J]. J. Mater. Sci. Technol., 2016, 32: 54
[49] Wang B S, Xiong S M.Effects of shot speed and biscuit thickness on externaly solidified crystals of high-pressure diet cast AM60B magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 767
[50] Wu M W, Xiong S M.Modeling of regular eutectic growth of binary alloy basedon cellular automaton method[J]. Acta Phys. Sin., 2011, 60: 058103(吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长[J]. 物理学报, 2011, 60: 058103)
[51] Zhang A, Guo Z P, Xiong S M.Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm[J]. J. Appl. Phys., 2017, 121: 125101
[52] Xiong S M, Wu M W.Experimental and modeling studies of the lamellar eutectic growth of Mg-Al alloy[J]. Metall. Mater. Trans., 2011, 43A: 208
[53] Wu M W, Xiong S M.Microstructure characteristics of the eutectics of die cast AM60B magnesium alloy[J]. J. Mater. Sci. Technol., 2011, 27: 1150
[54] Zhang A, Guo Z P, Xiong S M.Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt[J]. China Foundry, 2017, 14: 373
[55] Guo Z P, Xiong S M, Cao S X, et al.Development of an inverse heat transfer model and its application in the prediction of the interfacial heat flux[J]. Acta Metall. Sin., 2007, 43: 607(郭志鹏, 熊守美, 曹尚铉等. 热传导反算模型的建立及其在求解界面热流过程中的应用[J]. 金属学报, 2007, 43: 607)
[56] Guo Z P, Xiong S M, Cao S X, et al.Study of interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy ADC12Z[J]. Acta Metall. Sin., 2007, 43: 103(郭志鹏, 熊守美, 曹尚铉等. 铝合金ADC12Z高压铸造过程中铸件与铸型间界面热交换系数的研究[J]. 金属学报, 2007, 43: 103)
[57] Cao Y Y, Xiong S M, Guo Z P.Development of an inverse heat transfer model between melt and shot sleeve and its application in high pressure die casting process[J]. Acta Metall. Sin., 2015, 51: 745(曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用[J]. 金属学报, 2015, 51: 745)
[58] Guo Z P, Xiong S M, Cao S X, et al.Study on heat transfer behavior at metal/die interface in aluminum alloy die casting process I. Experimental study and determination of the interfacial heat transfer coefficient[J]. Acta Metall. Sin., 2007, 43: 1149(郭志鹏, 熊守美, 曹尚铉等. 铝合金压铸过程铸件/铸型界面换热行为的研究I.实验研究和界面换热系数求[J]. 金属学报, 2007, 43: 1149)
[59] Zhang A, Liang S, Guo Z P, et al.Determination of the interfacial heat transfer coefficient at the metal-sand mold interface in low pressure sand casting[J]. Exp. Therm. Fluid Sci., 2017, 88: 472
[60] Cao Y Y, Guo Z P, Xiong S M.Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy[J]. IOP Conference Series: Mater. Sci. Eng., 2012, 33: 012010
[61] Wu M W, Xiong S M.Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method[J]. Acta Metall. Sin., 2010, 46: 1534(吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46: 1534)
[62] Sun D Y, Mendelev M I, Becker C A, et al.Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg[J]. Phys. Rev., 2006, 73B: 024116
[63] Wu M W, Xiong S M.Modeling of equiaxed and columnar dendritic growth of magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2212
[64] Akamatsu S, Bottin-Rousseau S, Faivre G.Determination of the Jackson-Hunt constants of the In-In2Bi eutectic alloy based on in situ observation of its solidification dynamics[J]. Acta Mater., 2011, 59: 7586
[65] Ludwig A, Leibbrandt S. Generalised 'Jackson-Hunt' model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram [J]. Mater. Sci. Eng., 2004, A375-377: 540
[66] Zheng L L, Larson Jr.D J, Zhang H. Revised form of Jackson-Hunt theory: Application to directional solidification of MnBi/Bi eutectics[J]. J Cryst. Growth, 2000, 209: 121
[67] Guo Z P, Mi J, Xiong S M, et al.Phase Field simulation of binary alloy dendrite growth under thermal- and forced-flow fields: An implementation of the parallel-multigrid approach[J]. Metall. Mater. Trans., 2013, 44B: 924
[68] Guo Z P, Xiong S M.On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm[J]. Comput. Phys. Commun., 2015, 190: 89
[69] Chadwick G A.A hard-sphere model of crystal growth[J]. Metal Sci. J., 1967, 1: 132
[70] Van Der Planken J, Deruyttere A. A scanning electron microscope study of vapour grown magnesium[J]. J Cryst. Growth, 1971, 11: 273
[71] Donnay J D H, Harker D. A new law of crystal morphology extending the law of bravais[J]. J. Miner. Soc. Am., 1938, 22: 446
[72] Tang S, Wang Z J, Guo Y L, et al.Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study[J]. Acta Mater., 2012, 60: 5501
[73] Wang K L, Pei P C, Ma Z, et al.Dendrite growth in the recharging process of zinc-air batteries[J]. J. Mater. Chem., 2015, 3A: 22648
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[11] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[12] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[15] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.