|
|
铸造宏观过程数值模拟技术的研究现状与展望 |
廖敦明( ), 曹流, 孙飞, 陈涛 |
华中科技大学材料成形及模具技术国家重点实验室 武汉 430074 |
|
Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process |
Dunming LIAO( ), Liu CAO, Fei SUN, Tao CHEN |
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
Dunming LIAO,
Liu CAO,
Fei SUN,
Tao CHEN.
Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process[J]. Acta Metall Sin, 2018, 54(2): 161-173.
[1] | Fursund V K.Das eindringen von stahl in forsand einflub der obserflachen reaktionen und der temperatur[J]. Giesserei Tech. Wiss. Beih., 1962, 14: 51 | [2] | Liu D R, Yang Z P, Wang L P, et al.Development of simulation of mould filling during casting: A review[J]. J. Harbin Univ. Sci. Technol., 2016, 21(3): 96(刘东戎, 杨智鹏, 王丽萍等. 铸造充型过程数值模拟技术的发展及现状评述[J]. 哈尔滨理工大学学报, 2016, 21(3): 96) | [3] | Ravi B, Joshi D.Feedability analysis and optimisation driven by casting simulation[J]. Indian Foundry J., 2007, 53: 71 | [4] | Temam R.Navier-Stokes Equations[M]. 3rd Ed., Amsterdam: North-Holland, 1984: 30 | [5] | Taitel Y.On the parabolic, hyperbolic and discrete formulation of the heat conduction equation[J]. Int. J. Heat Mass Transfer, 1972, 15: 369 | [6] | Chen T.Numerical simulation of casting thermal stress based on finite element method and intelligent techniques [D]. Wuhan: Huazhong University of Science and Technology, 2013(陈涛. 基于有限元法的铸造热应力数值模拟及其智能化技术的研究 [D]. 武汉: 华中科技大学, 2013) | [7] | Mirbagheri S M H, Varahram N, Davami P. 3D computer simulation of melt flow and heat transfer in the lost foam casting process[J]. Int. J. Numer. Methods Eng., 2003, 58: 723 | [8] | Zhu W, Han Z Q, Jia Z Z, et al.An elastic-viscoplastic constitutive model for squeeze casting aluminum alloy[J]. Acta Metall. Sin., 2008, 44: 440(朱维, 韩志强, 贾湛湛等. 挤压铸造铝合金弹黏塑性本构模型[J]. 金属学报, 2008, 44: 440) | [9] | Wang Y C, Li D Y, Peng Y H, et al.Numerical simulation of low pressure die casting of magnesium wheel[J]. Int. J. Adv. Manuf. Technol., 2007, 32: 257 | [10] | Keerthiprasad K S, Murali M S, Mukunda P G, et al.Numerical simulation and cold modeling experiments on centrifugal casting[J]. Metall. Mater. Trans., 2011, 42B: 144 | [11] | Liao D M, Cao L, Chen T, et al.Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method[J]. China Foundry, 2016, 13: 123 | [12] | Dabade U A, Bhedasgaonkar R C.Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique[J]. Procedia CIRP, 2013, 7: 616 | [13] | Cao L, Liao D M, Zhou C, et al.Self-development casting temprature-field simulation software for multiply materials based on finite element method[J]. Spec. Cast. Nonferr. Alloy., 2015, 35: 1163(曹流, 廖敦明, 周聪等. 基于有限元法的多材质铸造温度场模拟软件开发[J]. 特种铸造及有色合金, 2015, 35: 1163) | [14] | Liu L J, Nakano S, Kakimoto K.Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model[J]. J. Cryst. Growth, 2006, 292: 515 | [15] | Sang W M, Li F W.An unstructured/structured multi-layer hybrid grid method and its application[J]. Int. J. Numer. Meth. Fluids, 2007, 53: 1107 | [16] | Mitchell A R, Griffiths D F.The Finite Difference Method in Partial Differential Equations[M]. Chichester: John Wiley and Sons, 1980: 30 | [17] | Cao L, Liao D M, Cao L M, et al.Temperature-field simulation software self-development of investment casting based on finite element method[J]. Foundry, 2014, 63: 1235(曹流, 廖敦明, 曹腊梅等. 基于有限元法的熔模铸造过程温度场模拟软件自主开发[J]. 铸造, 2014, 63: 1235) | [18] | Kim J, Kim D, Choi H.An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. J. Comput. Phys., 2001, 171: 132 | [19] | Liu G R, Liu M B.Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. Singapore: World Scientific, 2003: 30 | [20] | Cao W J, Zhou Z Y, Jiang F M.Smoothed particle hydrodynamics modeling and simulation of foundry filling process[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2321 | [21] | Carman P C.Fluid flow through granular beds[J]. Trans. Instn. Chem. Eng., 1937, 15: 150 | [22] | Homayonifar P, Babaei R, Attar E, et al.Numerical modeling of splashing and air entrapment in high-pressure die casting[J]. Int. J. Adv. Manuf. Technol., 2008, 39: 219 | [23] | Gunasegaram D R, Farnsworth D J, Nguyen T T.Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments[J]. J. Mater. Process. Technol., 2009, 209: 1209 | [24] | Liao D M, Liu R X, Chen L L, et al.Study on numerical simulation of thermal stresses during casting's solidification process based on FDM[J]. Foundry, 2003, 52: 420(廖敦明, 刘瑞祥, 陈立亮等. 基于有限差分法的铸件凝固过程热应力场数值模拟的研究[J]. 铸造, 2003, 52: 420) | [25] | Gu J P, Beckermann C.Simulation of convection and macrosegregation in a large steel ingot[J]. Metall. Mater. Trans., 1999, 30A: 1357 | [26] | Qin Y J, Sun G X, Yu W P, et al.Criterion for predicting cold shut mark[J]. Shanghai Met., 1997, 19(5): 23(秦永健, 孙国雄, 虞维平等. 冷隔缺陷预测判据[J]. 上海金属, 1997, 19(5): 23) | [27] | Lai N W, Griffiths W D, Campbell J.Modelling of the potential for oxide film entrainment in light metal alloy castings [A]. Proceedings of the 10th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes[C]. Destin, FL: Sandestin Resort & Conference Center, 2003: 415 | [28] | Maeda Y, Nomura H, Otsuka Y, et al.Numerical simulation of gas flow through sand core[J]. Int. J. Cast Met. Res., 2002, 15: 441 | [29] | Wang H L, Zheng X S, Yao S, et al.Equivalent strain criterion for hot cracking prediction[J]. J. Dalian Univ. Technol., 1998, 38(2): 194(王恒林, 郑贤淑, 姚山等. 热裂预测的等效应变判据[J]. 大连理工大学学报, 1998, 38(2): 194) | [30] | Jiao Y B, Wei Y H.Erosion process analysis of die-casting die for magnesium alloy componen[J]. Mech. Eng. Autom., 2008, (5): 97(焦亚波, 卫英慧. 镁合金压铸模表面冲蚀过程分析[J]. 机械工程与自动化, 2008, (5): 97) | [31] | Launder B E, Spalding D B.The numerical computation of turbulent flows[J]. Comput. Meth. Appl. Mech. Eng., 1974, 3: 269 | [32] | Hirt C W, Nichols B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39: 201 | [33] | Sussman M.A level set approach for computing solutions to incompressible two-phase flow [D]. Los Angeles: University of California, 1994 | [34] | Pedlosky J.Geophysical Fluid Dynamics[M]. 2nd Ed., Berlin: Springer-Verlag, 1987: 30 | [35] | Elliott A J, Pollock T M.Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes[J]. Metall. Mater. Trans., 2007, 38A: 871 | [36] | Brackbill J U, Kothe D B, Zemach C.A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100: 335 | [37] | Chen Y J.Research on numerical simulation of mould filling process of lost foam casting [D]. Wuhan: Huazhong University of Science and Technology, 2005(陈亚娟. 消失模铸造充型过程数值模拟研究 [D]. 武汉: 华中科技大学, 2005) | [38] | Liu X J, Bhavnani S H, Overfelt R A.Simulation of EPS foam decomposition in the lost foam casting process[J]. J. Mater. Process. Technol., 2007, 182: 333 | [39] | Zhang Q.Numerical simulation of gray iron of lost foam casting process [D]. Shenyang: Shenyang Ligong University, 2012(张倩. 灰铸铁件消失模铸造过程模拟研究 [D]. 沈阳: 沈阳理工大学, 2012) | [40] | Wei Z J, Li T X, An G Y, et al.Numerical calculation of gas pressure and gap width in lost foam process[J]. J. Harbin Inst. Technol., 1995, 27(4): 126(魏尊杰, 李天晓, 安阁英等. 消失模铸造气隙尺寸及压力数值计算[J]. 哈尔滨工业大学学报, 1995, 27(4): 126) | [41] | Roos H G, Stynes M, Tobiska L.Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion And Flow Problems[M]. Berlin: Springer-Verlag, 1996: 30 | [42] | Bai Y F, Xu D M, Guo J J, et al.Numerical calculation for latent heat releases in alloy castings of any solidification range using an extended temperature-compensation method[J]. Acta Metall. Sin., 2003, 39: 623(白云峰, 徐达鸣, 郭景杰等. 采用温度回升法对任意结晶区间的铸件凝固结晶潜热的数值计算[J]. 金属学报, 2003, 39: 623) | [43] | Zhou Y T, Guan Z Q, Gu Y X.Equivalent heat capacity method for solution of heat transfer with phase change[J]. J. Chem. Ind. Eng., 2004, 55: 1428(周业涛, 关振群, 顾元宪. 求解相变传热问题的等效热容法[J]. 化工学报, 2004, 55: 1428) | [44] | Swaminathan C R, Voller V R.A general enthalpy method for modeling solidification processes[J]. Metall. Trans., 1992, 23B: 651 | [45] | Thomas B G.Issues in thermal-mechanical modeling of casting processes[J]. ISIJ Int., 1995, 35: 737 | [46] | Hattel J, Hansen P, Hansen L F.Analysis of thermally induced stresses in die casting using a novel control volume technique [A]. Modelling of Casting, Welding and Advanced Solidification Processes[C]. USA: Minerals, Metals & Materials Society, TMS, 1993: 585 | [47] | Celentano D, Oller S, O?ate E.A coupled thermomechanical model for the solidification of cast metals[J]. Int. J. Solids Struct., 1996, 33: 647 | [48] | Richmond O, Tien R H.Theory of thermal stresses and air-gap formation during the early stages of solidification in a rectangular mold[J]. J. Mech. Phys. Solids, 1971, 19: 273 | [49] | Wiese J W, Dantzig J A.Modeling stress development during the solidification of gray iron castings[J]. Metall. Trans., 1990, 21A: 489 | [50] | Kang J W, Xiong S M, Liu B C, et al.3D numerical simulation of thermal stresses of a cast steel specimen by rheological model and analysis of the mechanism of hot tearing[J]. China Mech. Eng., 1999, 10: 1302(康进武, 熊守美, 柳百成等. 基于流变学模型的铸钢试件三维热应力数值模拟及热裂机理研究[J]. 中国机械工程, 1999, 10: 1302) | [51] | Jia B Q, Liu B C, Liu W Y.Rheological discussion on formation of hot cracking during solidification[J]. Foundry Technol., 1997, (6): 36(贾宝仟, 柳百成, 刘蔚羽. 砂型条件下铸件凝固过程热裂形成的流变学探讨[J]. 铸造技术, 1997, (6): 36) | [52] | Han Z Q, Zhu W, Liu B C.Thermomechanical modeling of solidification process of squeeze casting I. Mathematic model and solution methodology[J]. Acta Metall. Sin., 2009, 45: 356(韩志强, 朱维, 柳百成. 挤压铸造凝固过程热-力耦合模拟I.数学模型及求解方法[J]. 金属学报, 2009, 45: 356) | [53] | Zhu W, Han Z Q, Liu B C.Thermomechanical modeling of solidification process of squeeze casting II. Numerical simulation and experimental validation[J]. Acta Metall. Sin., 2009, 45: 363(朱维, 韩志强, 柳百成. 挤压铸造凝固过程热-力耦合模拟II.模拟计算及实验验证[J]. 金属学报, 2009, 45: 363) | [54] | Shao H, Li Y, Nan H, et al.Research on the interfacial heat transfer coeffecient between casting and ceramic shell in investment casting process of Ti6Al4V alloy[J]. Acta Metall. Sin., 2015, 51: 976(邵珩, 李岩, 南海等. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究[J]. 金属学报, 2015, 51: 976) | [55] | Cao Y Y, Xiong S M, Guo Z P.Development of an inverse heat transfer model between melt and shot sleeve and its application in high pressure die casting process[J]. Acta Metall. Sin., 2015, 51: 745(曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用[J]. 金属学报, 2015, 51: 745) | [56] | Wang X, Zhao Y T, Su D W, et al.Simulation of mold filling and temperature field of mold in metal mold gravity casting by ProCAST[J]. Foundry, 2008, 57: 1263(汪煦, 赵玉涛, 苏大为等. ProCAST在金属型重力铸造充型和模具温度场中的应用[J]. 铸造, 2008, 57: 1263) | [57] | Zhao H D, Ohnaka I, Zhu J D.Modeling of mold filling of Al gravity casting and validation with X-ray in-situ observation[J]. Appl. Math. Modell., 2008, 32: 185 | [58] | Jin C K, Kang C G.Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting[J]. J. Power Sources, 2011, 196: 8241 | [59] | D?rum C, Laukli H I, Hopperstad O S.Through-process numerical simulations of the structural behaviour of Al-Si die-castings[J]. Comput. Mater. Sci., 2009, 46: 100 | [60] | Wang H, Djambazov G, Pericleous K A, et al.Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality[J]. Comput. Fluids, 2011, 42: 92 | [61] | Wang H, Djambazov G, Pericleous K, et al.Numerical modelling of tilt casting process for γ-TiAl alloys[J]. Int. J. Cast Met. Res., 2012, 25: 65 | [62] | Lu S L, Xiao F R, Zhang S J, et al.Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST[J]. Appl. Therm. Eng., 2014, 73: 512 | [63] | Huang L, Du X C, Luo C B, et al.Low pressure casting ZL114A oil circuit shell casting[J]. Spec. Cast. Nonferrous Alloy, 2016, 36: 826(黄粒, 杜旭初, 罗传彪等. ZL114A铝合金油路壳体低压铸造工艺研究[J]. 特种铸造及有色合金, 2016, 36: 826) | [64] | Tang N, Wang Y L, Xu Q Y, et al.Numerical simulation of directional solidified microstructure of wide-chord aero blade by Bridgeman process[J]. Acta Metall. Sin., 2015, 51: 499(唐宁, 王艳丽, 许庆彦等. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51: 499) | [65] | Yan X W, Tang N, Liu X F, et al.Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting[J]. Acta Metall. Sin., 2015, 51: 1288(闫学伟, 唐宁, 刘孝福等. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究[J]. 金属学报, 2015, 51: 1288) | [66] | Cao L, Liao D M, Lu Y Z, et al.Heat transfer model of directional solidification by LMC process for superalloy casting based on finite element method[J]. Metall. Mater. Trans., 2016, 47A: 4640 | [67] | Luo H, Spiegel S, L?hner R.Hybrid grid generation method for complex geometries[J]. AIAA J., 2010, 48: 2639 | [68] | Grozdani? V.Finite-difference methods for simulating the solidification of castings[J]. Mater. Technol., 2009, 43: 233 | [69] | Chen T, Liao D M, Zhou J X.Numerical simulation of casting thermal stress and deformation based on finite difference method[J]. Mater. Sci. Forum, 2013, 762: 224 | [70] | Li C S, Thomas B G.Thermomechanical finite-element model of shell behavior in continuous casting of steel[J]. Metall. Mater. Trans., 2004, 35B: 1151 | [71] | Versteeg H K, Malalasekera W.An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. New York: Pearson Education, 2007: 30 | [72] | Liu M B, Liu G R.Smoothed particle hydrodynamics (SPH): An overview and recent developments[J]. Arch. Comput. Meth. Eng., 2010, 17: 25 | [73] | Arnberg L, B?ckerud L, Chai G.Solidification Characteristics of Aluminum Alloys: Dendrite Coherency[M]. Schaumburg: American Foundrymen's Society, 1996: 30 | [74] | Vazquez V, Juarez-Hernandez A, Mascarenas A, et al.Cold shut formation analysis on a free lead yellow brass tap[J]. Eng. Fail. Anal., 2010, 17: 1285 | [75] | Pang S Y, Chen L L, Zhang M Y, et al.Numerical simulation two phase flows of casting filling process using SOLA particle level set method[J]. Appl. Math. Model., 2010, 34: 4106 | [76] | Backer G, Kim C W, Siersma K, et al.Computational analysis of oxide Inclusions in aluminum castings[J]. Simulat. Aluminum Shape Cast. Process., 2006: 165 | [77] | Campbell J.The modeling of entrainment defects during casting [A]. TMS Annual Meeting, Simulation of Aluminum Shape Casting Processing: From Alloy Design to Mechanical Properties[C]. San Antonio, TX, United States: Minerals, Metals and Materials Society, 2006: 123 | [78] | Dai X, Yang X, Campbell J, et al.Influence of oxide film defects generated in filling on mechanical strength of aluminium alloy castings[J]. Mater. Sci. Technol., 2004, 20: 505 | [79] | Starobin A, Hirt C W, Goettsch D.A model for binder gas generation and transport in sand cores and molds [A]. Modeling of Casting, Welding, and Solidification Processes XII[C]. Warrendale, PA: TMS, The Minerals, Metals & Minerals Society, 2009: 30 | [80] | Nastac L, Jia S A, Nastac M N, et al.Numerical modeling of the gas evolution in furan binder-silica sand mold castings[J]. Int. J. Cast Met. Res., 2016, 29: 194 | [81] | Pan L W, Zhen L J, Zhang H, et al.Applicability of shrinkage porosity prediction for casting with Niyama criterion[J]. J. Beijing Univ. Aeronaut. Astronaut., 2011, 37: 1534(潘利文, 郑立静, 张虎等. Niyama判据对铸件缩孔缩松预测的适用性[J]. 北京航空航天大学学报, 2011, 37: 1534) | [82] | Zhang B.Casting thermal stress simulation in quasi-solid state during solidification based on ABAQUS [D]. Wuhan: Huazhong University of Science and Technology, 2011(张彬. 基于ABAQUS的铸件准固态区热应力场数值模拟技术 [D]. 武汉: 华中科技大学, 2011) | [83] | Rappaz M, Drezet J M, Gremaud M.A new hot-tearing criterion[J]. Metall. Mater. Trans., 1999, 30A: 449 | [84] | Beckermann C.Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243 | [85] | Wu F.Numerical simulation of the aluminum irregular castings in HPDC [D]. Guangzhou: South China University of Technology, 2010(吴菲. 铝合金异形件压铸成形工艺的数值模拟分析 [D]. 广州: 华南理工大学, 2010) | [86] | Goettsch D D, Dantzig J A.Modeling microstructure development in gray cast irons[J]. Metall. Mater. Trans., 1994, 25A: 1063 | [87] | Xiao Q Z, Karihaloo B L.Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery[J]. Int. J. Numer. Methods Eng., 2006, 66: 1378 | [88] | Wang D X, Liu L Y, Wang Z B, et al.Optimization of injection mold process parameters based on artificial neural network technology[J]. Die Mould Technol., 2001, (6): 1(王德翔, 刘来英, 王振宝等. 基于人工神经网络技术的注塑成型工艺参数优化[J]. 模具技术, 2001, (6): 1) | [89] | Panchal J H, Kalidindi S R, McDowell D L. Key computational modeling issues in integrated computational materials engineering[J]. Comput. Aided Des., 2013, 45: 4 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|