|
|
镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究 |
熊守美1,2( ), 杜经莲1, 郭志鹏1, 杨满红1, 吴孟武1, 毕成1, 曹永友1 |
1清华大学材料科学与工程学院 北京 100084 2清华大学先进成形制造教育部重点实验室 北京 100084 |
|
Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys |
Shoumei XIONG1,2( ), Jinglian DU1, Zhipeng GUO1, Manhong YANG1, Mengwu WU1, Cheng BI1, Yongyou CAO1 |
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China |
引用本文:
熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
Shoumei XIONG,
Jinglian DU,
Zhipeng GUO,
Manhong YANG,
Mengwu WU,
Cheng BI,
Yongyou CAO.
Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. Acta Metall Sin, 2018, 54(2): 174-192.
[1] | Yu W B, Cao Y Y, Li X B, et al.Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy[J]. J. Mater. Sci. Technol., 2017, 33: 52 | [2] | Yang W C, Liu L, Zhang J, et al.Insight into the partial solutionisation of a high pressure die-cast Al-Mg-Zn-Si alloy for mechanical property enhancement[J]. Mater. Sci. Eng., 2017, A682: 85 | [3] | Bi C, Guo Z P, Xiong S M.Modelling and simulation for die casting mould filling process using Cartesian cut cell approach[J]. Int. J. Cast. Metall. Res., 2015, 28: 234 | [4] | Wang Q L, Xiong S M.Vacuum assisted high-pressure die casting of AZ91D magnesium alloy at different slow shot speeds[J]. Trans. Nonferrous Met. Soc., 2014, 24: 3051 | [5] | Liu B C, Xiong S M.High pressure die casting process of magnesium alloys and its modeling and simulation for automobile industry[J]. J. Automot. Safety Energy, 2011, 2(1): 1(柳百成, 熊守美. 汽车工业镁合金压铸成形技术及模拟仿真[J]. 汽车安全与节能学报, 2011, 2(1): 1) | [6] | Xu N, Bao Y F, Shen J.Enhanced strength and ductility of high pressure die casting AZ91D Mg alloy by using cold source assistant friction stir processing[J]. Mater. Lett., 2017, 190: 24 | [7] | Yu W B, Cao Y Y, Guo Z P, et al.Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition[J]. China Foundry, 2016, 13: 269 | [8] | Xiong S S, Su S F.Research progress on processing technology of magnesium alloys[J]. Foundry, 2005, 54(1): 20(熊守美, 苏仕方. 镁合金成形技术研究进展[J]. 铸造, 2005, 54(1): 20) | [9] | Guan R G, Cipriano A F, Zhao Z Y, et al.Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications-alloy processing, microstructure, mechanical properties, and biodegradation[J]. Mater. Sci. Eng., 2013, C33: 3661 | [10] | Guo Z P, Xiong S M, Li M, et al.Relationship between metal-die interfacial heat transfer coefficient and casting solidification rate in high pressure die casting process[J]. Acta Metall. Sin., 2009, 45: 102(郭志鹏, 熊守美, 李梅等. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45: 102) | [11] | Guo Z P, Xiong S M, Cao S X, et al.Effects of alloy materials and process parameters on the heat transfer coefficient at metal/die interface in high pressure die casting[J]. Acta Metall. Sin., 2008, 44: 433(郭志鹏, 熊守美, 曹尚铉等. 合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响[J]. 金属学报, 2008, 44: 433) | [12] | Cao Y Y, Guo Z P, Xiong S M.Determination of interfacial heat transfer coefficient and its application in high pressure die casting process[J]. China Foundry, 2014, 11: 314 | [13] | Jia L R, Xiong S M, Liu B B.Study on numerical simulation of mold filling and heat transfer in die casting process[J]. J. Mater. Sci. Technol., 2000, 18: 269 | [14] | Guo Z P, Xiong S M, Cho S, et al.Interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy[J]. Front. Mech. Eng. China, 2007, 2: 283 | [15] | Guo Z P, Xiong S M, Liu B C, et al.Understanding of the influence of process parameters on the heat transfer behavior at the metal/die interface in high pressure die casting process[J]. Sci. China, 2009, 52E: 172 | [16] | Guo Z P, Xiong S M, Cho S, et al.Heat transfer between casting and die during high pressure die casting process of AM50 alloy-modeling and experimental results[J]. J. Mater. Sci. Technol., 2008, 24: 131 | [17] | Guo Z P, Xiong S M, Murakami M, et al.Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy[J]. China Foundry, 2007, 4: 5 | [18] | Guo Z P, Xiong S M, Cho S, et al. Influence of processing parameters on interfacial heat transfer coefficient at the metal-die interface of die cast AM50 alloy [J]. Mater. Sci. Forum, 2007, 561-565: 1007 | [19] | Guo Z P, Xiong S M, Liu B C, et al.Effect of process parameters, casting thickness, and alloys on the interfacial heat-transfer coefficient in the high-pressure die-casting process[J]. Metall. Mater. Trans., 2008, 39A: 2896 | [20] | Guo Z P, Xiong S M, Liu B C, et al.Determination of the heat transfer coefficient at metal-die interface of high pressure die casting process of AM50 alloy[J]. Int. J. Heat Mass Transer, 2008, 51: 6032 | [21] | Sandl?bes S, Friák M, Zaefferer S, et al.The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J]. Acta Mater., 2012, 60: 3011 | [22] | Sandl?bes S, Pei Z, Friák M, et al.Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties[J]. Acta Mater., 2014, 70: 92 | [23] | B?ttger B, Eiken J, Ohno M, et al.Controlling microstructure in magnesium alloys: A combined thermodynamic, experimental and simulation approach[J]. Adv. Eng. Mater., 2006, 8: 241 | [24] | Xiong S M, Liu B C.Study on numerical simulation of mold-filling and solidification processes of shaped casting[J]. Chin. J. Mech. Eng., 1999, 1: 4 | [25] | Kleiner S, Beffort O, Wahlen A, et al.Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys[J]. J. Light Met., 2002, 2: 277 | [26] | Pettersen K, Lohne O, Ryum N.Dendritic solidification of magnesium alloy AZ91[J]. Metall. Trans., 1990, 21A: 221 | [27] | Cai B, Wang J, Kao A, et al.4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification[J]. Acta Mater., 2016, 117: 160 | [28] | Nestler B, Garcke H, Stinner B.Multicomponent alloy solidification: Phase-field modeling and simulations[J]. Phys. Rev. 2005, 71E: 041609 | [29] | Yang M H, Xiong S M, Guo Z P.Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys[J]. Acta Mater., 2016, 112: 261 | [30] | Lu K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nat. Rev. Mater., 2016, 1: 16019 | [31] | Wang M Y, Xu Y J, Zheng Q W, et al.Dendritic growth in mg-based alloys: Phase-field simulations and experimental verification by X-ray synchrotron tomography[J]. Metall. Mater. Trans., 2014, 45A: 2562 | [32] | Shuai S S, Guo E Y, Phillion A B, et al.Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of MgSn alloys[J]. Acta Mater., 2016, 118: 260 | [33] | Yang M H, Xiong S M, Guo Z P.Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling[J]. Acta Mater., 2015, 92: 8 | [34] | Wu M W, Xiong S M.A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy[J]. Acta Metall. Sin.(Eng. Lett.), 2012, 25: 169 | [35] | Nie J F, Oh-ishi K, Gao X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy[J]. Acta Mater., 2008, 56: 6061 | [36] | Casari D, Mirihanage W U, Falch K V, et al.α-Mg primary phase formation and dendritic morphology transition in solidification of a Mg-Nd-Gd-Zn-Zr casting alloy[J]. Acta Mater., 2016, 116: 177 | [37] | Guo E Y, Phillion A B, Cai B, et al.Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography[J]. Acta Mater., 2017, 123: 373 | [38] | Xu Q Y, Feng W M, Liu B C, et al.Numerical simulation of dendrite growth of aluminum alloy[J]. Acta Metall. Sin., 2002, 38: 799(许庆彦, 冯伟明, 柳百成等. 铝合金枝晶生长的数值模拟[J]. 金属学报, 2002, 38: 799) | [39] | Du J L, Guo Z P, Yang M H, et al.Growth pattern and orientation selection of magnesium alloy dendrite: From 3-D experimental characterization to theoretical atomistic simulation[J]. Mater. Today Commu., 2017, 13: 155 | [40] | Du J L, Guo Z P, Zhang A, et al.Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys[J]. Sci. Rep., 2017, 7: 13600 | [41] | Du J L, Guo Z P, Yang M H, et al.Multiscale simulation of α-Mg dendrite growth via 3D phase field modeling and ab-initio first-principle calculations [A]. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering[C]. Cham: Springer, 2017: 263 | [42] | Li X B, Xiong S M, Guo Z P.On the porosity induced by externally solidified crystals in high-pressure die-cast of AM60B alloy and its effect on crack initiation and propagation[J]. Mater. Sci. Eng., 2015, A633: 35 | [43] | Wu M W, Xiong S M.Microstructure characteristics of high pressure die cast AM60B magnesium alloy[J]. Rare Met. Mater. Eng., 2012, 41: 1580(吴孟武, 熊守美. 压铸镁合金AM60B的微观组织特征[J]. 稀有金属材料与工程, 2012, 41: 1580) | [44] | Wu M W, Xiong S M.Experimental and modeling studies on the structure formation of high pressure die cast magnesium alloy considering the externally solidified crystals in the shot sleeve[J]. Acta Metall. Sin., 2011, 47: 528(吴孟武, 熊守美. 考虑压室预结晶的镁合金压铸组织实验及模拟研究[J]. 金属学报, 2011, 47: 528) | [45] | Bi C, Xiong S M, Li X B, et al.Development of a fluid-particle model in simulating the motion of external solidified crystals and the evolution of defect bands in high-pressure die casting[J]. Metall. Mater. Trans., 2016, 47B: 939 | [46] | Li X B, Xiong S M, Guo Z P.On the tensile failure induced by defect band in high pressure die casting of AM60B magnesium alloy[J]. Mater. Sci. Eng., 2016, A674: 687 | [47] | Li X B, Xiong S M, Guo Z P.Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy[J]. J. Mater. Sci. Technol., 2016, 231: 1 | [48] | Li X B, Xiong S M, Guo Z P.Correlation between porosity and fracture mechanism in high pressure die casting of AM60B Alloy[J]. J. Mater. Sci. Technol., 2016, 32: 54 | [49] | Wang B S, Xiong S M.Effects of shot speed and biscuit thickness on externaly solidified crystals of high-pressure diet cast AM60B magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 767 | [50] | Wu M W, Xiong S M.Modeling of regular eutectic growth of binary alloy basedon cellular automaton method[J]. Acta Phys. Sin., 2011, 60: 058103(吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长[J]. 物理学报, 2011, 60: 058103) | [51] | Zhang A, Guo Z P, Xiong S M.Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm[J]. J. Appl. Phys., 2017, 121: 125101 | [52] | Xiong S M, Wu M W.Experimental and modeling studies of the lamellar eutectic growth of Mg-Al alloy[J]. Metall. Mater. Trans., 2011, 43A: 208 | [53] | Wu M W, Xiong S M.Microstructure characteristics of the eutectics of die cast AM60B magnesium alloy[J]. J. Mater. Sci. Technol., 2011, 27: 1150 | [54] | Zhang A, Guo Z P, Xiong S M.Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt[J]. China Foundry, 2017, 14: 373 | [55] | Guo Z P, Xiong S M, Cao S X, et al.Development of an inverse heat transfer model and its application in the prediction of the interfacial heat flux[J]. Acta Metall. Sin., 2007, 43: 607(郭志鹏, 熊守美, 曹尚铉等. 热传导反算模型的建立及其在求解界面热流过程中的应用[J]. 金属学报, 2007, 43: 607) | [56] | Guo Z P, Xiong S M, Cao S X, et al.Study of interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy ADC12Z[J]. Acta Metall. Sin., 2007, 43: 103(郭志鹏, 熊守美, 曹尚铉等. 铝合金ADC12Z高压铸造过程中铸件与铸型间界面热交换系数的研究[J]. 金属学报, 2007, 43: 103) | [57] | Cao Y Y, Xiong S M, Guo Z P.Development of an inverse heat transfer model between melt and shot sleeve and its application in high pressure die casting process[J]. Acta Metall. Sin., 2015, 51: 745(曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用[J]. 金属学报, 2015, 51: 745) | [58] | Guo Z P, Xiong S M, Cao S X, et al.Study on heat transfer behavior at metal/die interface in aluminum alloy die casting process I. Experimental study and determination of the interfacial heat transfer coefficient[J]. Acta Metall. Sin., 2007, 43: 1149(郭志鹏, 熊守美, 曹尚铉等. 铝合金压铸过程铸件/铸型界面换热行为的研究I.实验研究和界面换热系数求[J]. 金属学报, 2007, 43: 1149) | [59] | Zhang A, Liang S, Guo Z P, et al.Determination of the interfacial heat transfer coefficient at the metal-sand mold interface in low pressure sand casting[J]. Exp. Therm. Fluid Sci., 2017, 88: 472 | [60] | Cao Y Y, Guo Z P, Xiong S M.Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy[J]. IOP Conference Series: Mater. Sci. Eng., 2012, 33: 012010 | [61] | Wu M W, Xiong S M.Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method[J]. Acta Metall. Sin., 2010, 46: 1534(吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46: 1534) | [62] | Sun D Y, Mendelev M I, Becker C A, et al.Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg[J]. Phys. Rev., 2006, 73B: 024116 | [63] | Wu M W, Xiong S M.Modeling of equiaxed and columnar dendritic growth of magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2212 | [64] | Akamatsu S, Bottin-Rousseau S, Faivre G.Determination of the Jackson-Hunt constants of the In-In2Bi eutectic alloy based on in situ observation of its solidification dynamics[J]. Acta Mater., 2011, 59: 7586 | [65] | Ludwig A, Leibbrandt S. Generalised 'Jackson-Hunt' model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram [J]. Mater. Sci. Eng., 2004, A375-377: 540 | [66] | Zheng L L, Larson Jr.D J, Zhang H. Revised form of Jackson-Hunt theory: Application to directional solidification of MnBi/Bi eutectics[J]. J Cryst. Growth, 2000, 209: 121 | [67] | Guo Z P, Mi J, Xiong S M, et al.Phase Field simulation of binary alloy dendrite growth under thermal- and forced-flow fields: An implementation of the parallel-multigrid approach[J]. Metall. Mater. Trans., 2013, 44B: 924 | [68] | Guo Z P, Xiong S M.On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm[J]. Comput. Phys. Commun., 2015, 190: 89 | [69] | Chadwick G A.A hard-sphere model of crystal growth[J]. Metal Sci. J., 1967, 1: 132 | [70] | Van Der Planken J, Deruyttere A. A scanning electron microscope study of vapour grown magnesium[J]. J Cryst. Growth, 1971, 11: 273 | [71] | Donnay J D H, Harker D. A new law of crystal morphology extending the law of bravais[J]. J. Miner. Soc. Am., 1938, 22: 446 | [72] | Tang S, Wang Z J, Guo Y L, et al.Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study[J]. Acta Mater., 2012, 60: 5501 | [73] | Wang K L, Pei P C, Ma Z, et al.Dendrite growth in the recharging process of zinc-air batteries[J]. J. Mater. Chem., 2015, 3A: 22648 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|