Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 615-621    DOI: 10.11900/0412.1961.2016.00332
  论文 本期目录 | 过刊浏览 |
Sn-Ag-Cu钎料焊接显微组织演化和性能研究
孙磊1,陈明和1(),张亮2,杨帆2
1 南京航空航天大学机电学院 南京 210016
2 江苏师范大学机电工程学院 徐州 221116
Microstructures Evolution and Properties of Sn-Ag-Cu Solder Joints
Lei SUN1,Minghe CHEN1(),Liang ZHANG2,Fan YANG2
1 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
1 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(5124 KB)   HTML
摘要: 

利用DSC、微焊点强度测试仪、SEM、EDS及XRD,研究了Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu钎料的熔化特性、润湿性、力学性能、显微组织及相种类。通过TL-1000型高低温循环试验箱测试了-55~125 ℃循环条件下Sn-Ag-Cu焊点的界面层变化。结果表明,随着Ag含量的增加,钎料的熔点变化不大,钎料的润湿角显著降低,N2氛围条件下,3种钎料的润湿性均出现明显的提高。此外,3种焊点的力学性能也随着Ag含量的增加显著提高。Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu焊点的基体组织存在着少量的Ag3Sn和大颗粒Cu6Sn5化合物,且分布杂乱,Sn3.0Ag0.5Cu焊点的基体组织则相对较为均匀,这也是Sn0.3Ag0.7Cu、Sn1.0Ag0.5Cu焊点的力学性能低于Sn3.0Ag0.5Cu的主要原因。对焊点进行热循环处理,发现3种焊点界面金属间化合物的厚度明显增加,界面层的形貌也由原来扇贝状向层状转化。

关键词 Sn-Ag-Cu润湿性力学性能显微组织热循环    
Abstract

SnAgCu solder alloys, such as Sn3.0Ag0.5Cu, Sn3.8Ag0.7Cu and Sn3.9Ag0.6Cu, are widely used for consumer electronics due to their good wettability, high mechanical properties and excellent thermal fatigue reliability. However, the high Ag content in SnAgCu solder can bring about a relatively high cost and poor drop impact reliability because of the formations of thicker brittle Ag3Sn compound during soldering. Therefore, the development of low Ag content SnAgCu solders to satisfy the requirements of electronic production has become a hot topic in this field. In this work, the effects of Sn0.3Ag0.7Cu, Sn1.0Ag0.5Cu and Sn3.0Ag0.5Cu solder on the melting character, wettability, mechanical properties and microstructures, phase composition were investigated by DSC, micro-joint strength tester, SEM, EDS and XRD. Under -55~125 ℃ cyclic conditions, the interfacial layer change of Sn-Ag-Cu solder joints was measured by TL-1000 high and low temperature test chamber. The results showed that, with the Ag content increased, the melting point was not changed, the wetting angle significantly decreased. And the wettability of three solders was improved under N2 atmosphere. Moreover, the mechanical properties of three solder joints were enhanced with the increase of Ag content. The matrix structure of Sn0.3Ag0.7Cu and Sn1.0Ag0.5Cu solder joint have a small amount of Ag3Sn and large Cu6Sn5 particles, and the distribution of particles were disordered. However, the matrix structure of Sn3.0Ag0.5Cu solder joint was obviously uniform. This is the reason that the mechanical properties of Sn0.3Ag0.7Cu and Sn1.0Ag0.5Cu solder joints were lower than that of Sn3.0Ag0.5Cu. In addition, the solder joints were subjected to a thermal cycling reliability test, it was found that the thickness of intermetallic compounds (IMCs) increased, and the morphology of IMCs was gradually changed from scallop-like to planar-like.

Key wordsSn-Ag-Cu    wettability    mechanical property    microstructure    thermal cycling
收稿日期: 2016-07-25     
基金资助:国家自然科学基金项目No.51475220,江苏省“六大人才高峰”高层次人才项目No.XCL022,江苏省“青蓝工程”中青年学术带头人计划,新型钎焊材料与技术国家重点实验室开放课题项目No.SKLABFMT201503,以及中国博士后科学基金项目No.2016M591464

引用本文:

孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
Lei SUN, Minghe CHEN, Liang ZHANG, Fan YANG. Microstructures Evolution and Properties of Sn-Ag-Cu Solder Joints. Acta Metall Sin, 2017, 53(5): 615-621.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00332      或      https://www.ams.org.cn/CN/Y2017/V53/I5/615

图1  无铅焊接回流曲线
图2  Sn-Ag-Cu焊点的力学性能测试示意图
图3  热循环实验的温度循环载荷曲线
Solder TS TL Melting
range
Under-
cooling
Sn0.3Ag0.7Cu 213.0 228.1 15.1 22.6
Sn1.0Ag0.5Cu 213.7 227.7 14.0 17.8
Sn3.0Ag0.5Cu 213.4 219.7 6.3 8.3
表1  Sn-Ag-Cu钎料的熔化温度
图4  不同氛围下Sn-Ag-Cu钎料的润湿角
图5  Sn-Ag-Cu钎料焊点的力学性能
图6  Sn-Ag-Cu焊点断口SEM像
图7  Sn3.0Ag0.5Cu焊点的SEM像、EDS面扫描图及XRD谱
图8  Sn-Ag-Cu焊点基体组织的SEM像
图9  Sn-Ag-Cu焊点界面层的SEM像
图10  热循环500 cyc后Sn-Ag-Cu焊点界面层的SEM像
图11  不同热循环时间下Sn-Ag-Cu 焊点的界面层厚度
[1] Chen X, Zhou J, Xue F, et al.Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates[J]. Mater. Sci. Eng., 2016, A662: 251
[2] Xu S Y, Habib A H, Pickel A D, et al.Magnetic nanoparticle-based solder composites for electronic packaging applications[J]. Prog. Mater. Sci., 2015, 67: 95
[3] Jiang Z, Tian Y H, Ding S.Synthesis of Sn3.5Ag0.5Cu nanoparticle solders and soldering mechanism[J]. Acta Metall. Sin., 2016, 52: 105
[3] (江智, 田艳红, 丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理[J]. 金属学报, 2016, 52: 105)
[4] Chellvarajoo S, Abdullah M Z.Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process[J]. Mater. Des., 2016, 90: 499
[5] Chen X, Xue F, Zhou J, et al.Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder[J]. J. Alloys Compd., 2015, 633: 377
[6] Chen G, Wu F S, Liu C Q, et al.Microstructures and properties of new Sn-Ag-Cu lead-free solder reinforced with Ni-coated graphene nanosheets[J]. J. Alloys Compd., 2016, 656: 500
[7] Yang M, Ji H J, Wang S, et al.Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering[J]. J. Alloys Compd., 2016, 679: 18
[8] Luo D X, Xue S B, Li Z Q.Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder[J]. J. Mater. Sci. Mater. Electron., 2014, 25: 3566
[9] Hamada N, Uesugi T, Takigawa Y, et al.Effect of addition of small amount of Zinc on microstructural evolution and thermal shock behavior in low-Ag Sn-Ag-Cu solder joints during Thermal Cycling[J]. Mater. Trans., 2013, 54: 796
[10] Sun L, Zhang L, Xu L, et al.Effect of nano-Al addition on properties and microstructure of low-Ag content Sn-1Ag-0.5Cu solders[J]. J. Mater. Sci. Mater. Electron., 2016, 27: 7665
[11] Chen F J, Gao F, Zhang J Y, et al.Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys[J]. J. Mater. Sci., 2011, 46: 3424
[12] Kanlayasiri K, Mongkolwongrojn M, Ariga T.Influence of indium addition on characteristics of Sn-0.3Ag-0.7Cu solder alloy[J]. J. Alloys Compd., 2009, 485: 225
[13] Wang C Q, Li M Y, Tian Y H, et al.Review of JIS Z 3198: test method for lead-free solders[J]. Electron. Process Technol., 2004, 25(2): 47
[13] (王春青, 李明雨, 田艳红等. JIS Z 3198无铅钎料试验方法简介与评述[J]. 电子工艺技术, 2004, 25(2): 47)
[14] Cheng Y K, Li L F, Xu G L.Effect of Ag on properties of Sn-0.7Cu-0.2Ni alloy solder[J]. J. Funct. Mater., 2013, 44: 384
[14] (程艳奎, 李良锋, 徐光亮. 微量Ag元素对Sn-0.7Cu-0.2Ni钎料性能的影响[J]. 功能材料, 2013, 44: 384)
[15] Zhang L, Fan X Y, Guo Y H, et al.Properties enhancement of SnAgCu solders containing rare earth Yb[J]. Mater. Des., 2014, 57: 646
[16] Wang J X, Xue S B, Huang X, et al.Effects of N2 protection on wettability of Sn-Cu-Ni-Ce lead-free solder[J]. Trans. China Weld. Inst., 2007, 28(1): 49
[16] (王俭辛, 薛松柏, 黄翔等. 氮气保护对Sn-Cu-Ni-Ce无铅钎料润湿性的影响[J]. 焊接学报, 2007, 28(1): 49)
[17] Ma X L.Research on SnAgCu solder alloys [D]. Beijing: Beijing University of Technology, 2004(马秀玲. SnAgCu系无铅钎料的研究 [D]. 北京: 北京工业大学, 2004)
[18] Zhang L, Han J G, Guo Y H, et al.Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging[J]. J. Mater. Sci. Mater. Electron., 2014, 25: 4489
[19] Yang L, Ge J G, Zhang Y C, et al.Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free solder[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 613
[20] El-Daly A A, Al-Ganainy G S, Fawzy A, et al. Structural characterization and creep resistance of nano-silicon carbide reinforced Sn-1.0Ag-0.5Cu lead-free solder alloy[J]. Mater. Des., 2014, 55: 837
[21] Gu Y, Zhao X C, Li Y, et al.Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn-Ag-Cu solders on Cu substrates[J]. J. Alloys Compd., 2015, 627: 39
[22] Wu R W, Tsao L C, Chen R S.Effect of 0.5 wt% nano-TiO2 addition into low-Ag Sn0.3Ag0.7Cu solder on the intermetallic growth with Cu substrate during isothermal aging[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 1858
[23] Ma L M, Xu G C, Sun J, et al.Electromigration effects on intermetallic compound layer growth in Sn-3.0Ag-0.5Cu-XCo solder joint[J]. Rare Met. Mater. Eng., 2011, 40(Suppl.): 438
[23] (马立民, 徐广臣, 孙嘉等. Sn-3.0Ag-0.5Cu-XCo钎焊接头金属间化合物层电迁移现象的研究[J]. 稀有金属材料与工程, 2011, 40(增刊): 438)
[24] Sun L, Zhang L, Zhong S J, et al.Reliability study of industry Sn3.0Ag0.5Cu/Cu lead-free soldered joints in electronic packaging[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 9164
[25] Zhang L, Gao L L.Interfacial compounds growth of SnAgCu (nano La2O3)/Cu solder joints based on experiments and FEM[J]. J. Alloys Compd., 2015, 635: 55
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.