Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 298-306    DOI: 10.11900/0412.1961.2015.00348
  论文 本期目录 | 过刊浏览 |
Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*
鲁艳红,宋元元,陈胜虎,戎利建()
中国科学院金属研究所中国科学院核用材料和安全评价重点实验室, 沈阳 110016
EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL
Yanhong LU,Yuanyuan SONG,Shenghu CHEN,Lijian Rong()
Key Laborotary of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy ofSciences, Shenyang 110016, China
引用本文:

鲁艳红, 宋元元, 陈胜虎, 戎利建. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*[J]. 金属学报, 2016, 52(3): 298-306.
Yanhong LU, Yuanyuan SONG, Shenghu CHEN, Lijian Rong. EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL[J]. Acta Metall Sin, 2016, 52(3): 298-306.

全文: PDF(9615 KB)   HTML
摘要: 

在9Cr2WVTa低活化铁素体/马氏体钢中添加合金元素Al和Si, 利用SEM, TEM, EPMA和显微硬度计研究了Al和Si对9Cr2WVTa钢显微组织,力学性能,冲击性能以及耐液态Pb-Bi共晶合金(LBE)腐蚀性能的影响. 结果表明, Al和Si缩小9Cr2WVTa合金的奥氏体相区, 促进δ铁素体的生成, 且Al元素的影响更加明显. 位于马氏体与δ铁素体界面的M23C6碳化物处易产生应力集中进而形成孔洞, 严重降低9Cr2WVTa合金的室温冲击性能, 断口呈现脆性断裂特征. 通过Al和Si的复合添加, 获得了具有较好力学性能和冲击性能的9Cr2WVTa合金, 合金在550 ℃静态液态Pb-Bi共晶合金中的耐腐蚀性能明显提高, 其原因在于合金内层氧化层中形成的Al和Si的氧化物, 提高了内层氧化层的致密性, 降低了合金元素及氧的扩散速率.

关键词 9Cr2WVTa冲击性能AlSiPb-Bi腐蚀    
Abstract

9Cr2WVTa steel is one kind of reduced activation ferritic/martensitic (RAFM) steels, which are considered as the candidate structural materials for the accelerator driven subcritical system (ADS). Effects of Al and Si on the microstructure, tensile properties, impact toughness and corrosion behavior in liquid lead-bismuth eutectic (LBE) of 9Cr2WVTa steels were investigated by SEM, TEM, EPMA and micro hardness tester. The results showed that the addition of Al and Si promoted the formation of δ-ferrite, and Al was a much stronger ferrite stabilizer than Si. The presence of δ-ferrite significantly degraded the impact toughness of 9Cr2WVTa steels. M23C6 carbides were observed to precipitate at the δ-ferrite grain boundaries, and stress concentrations were created at the carbide/matrix interface, resulting in the intergranular cracking after deformation. Static corrosion tests were conducted in oxygen-saturated LBE at 550 ℃ for 5000 h to study the effects of Al and Si on the corrosion behaviors in LBE. It is shown that the addition of Al and Si improved the corrosion resistance in LBE due to that appreciable enrichments of Al and Si in inner oxide layer increased the compactness of oxide layer and reduced the diffusion rates of alloy elements and oxygen atoms.

Key words9Cr2WVTa    impact property    Al    Si    Pb-Bi corrosion
收稿日期: 2015-07-03     
基金资助:*国家自然科学基金项目91226204和中国科学院先导专项基金项目XDA03010304资助
Alloy No. C Cr W V Ta Mn Al Si Fe
1 0.104 8.61 1.66 0.25 0.08 0.49 - 0.10 Bal.
2 0.104 8.51 1.66 0.25 0.09 0.37 1.22 0.11 Bal.
3 0.116 8.45 1.61 0.25 0.10 0.48 - 1.22 Bal.
4 0.170 8.88 1.98 0.25 0.14 0.61 0.15 0.71 Bal.
表1  4种合金的化学成分
图1  No.1~No.4合金经过调质处理后的SEM像
图2  No.1和No.4合金经调质处理后的TEM像
图3  热平衡条件下4种合金中各相析出量随温度的变化
图4  4种合金经调质处理后的室温拉伸性能
图5  4种合金经过调质处理的室温冲击断口SEM像
图6  No.1和No.2合金经过调质处理的室温冲击断口截面SEM像
图7  No.1和No.4合金经调质处理后的高温力学性能
图8  No.1 和No.4 合金在静态的液态Pb-Bi 共晶合金中腐蚀5000 h 后氧化层厚度随时间的变化曲线
图9  No.1和No.4 合金在静态的液态Pb-Bi 共晶合金中腐蚀1500 和5000 h 后的截面SEM像
图10  No.1 和No.4合金在550 ℃液态Pb-Bi 共晶合金中腐蚀1500 h 后的氧化层中元素分布
图11  No.1 和No.4 合金在550 ℃液态Pb-Bi 共晶合金中腐蚀5000 h 后的氧化层显微硬度
[1] Kurata Y, Takizuka T, Osugi T, Takano H.J Nucl Mater, 2002; 301: 1
[2] Gokhale P A, Deokattey S, Kumar V.Prog Nucl Energy, 2006; 48: 91
[3] Botazzoli P, Agosti F, Marcello V, Luzzi L.Radiat Eff Defects Solids, 2009; 164: 330
[4] Fazio C, Benamati G, Martini C, Palombarini G.J Nucl Mater, 2001; 296: 243
[5] Baluc N, Gelles D, Jitsukawa S, Kimura A, Klueh R T, Odette G R, Van der Schaaf B, Yu J N.J Nucl Mater, 2007; 367: 33
[6] Klueh R, Nelson A.J Nucl Mater, 2007; 371: 37
[7] Tanigawa H, Shiba K, Sakasegawa H, Hirose T, Jitsukawa S.Fusion Eng Des, 2011; 86: 2549
[8] Conn R W, Bloom E E.Nucl Techol, 1984; 5: 291
[9] Butterworth G J, Jarvis O N.J Nucl Mater, 1984; 122: 982
[10] Klueh R L, Bloom E E.Nucl Eng Des, 1985; 2: 383
[11] Dulieu D, Tupholme K W, Butterworth G J.J Nucl Mater, 1986; 1097: 141
[12] Tamura M, Hayakawa H.J Nucl Mater, 1986; 1067: 141
[13] Noda T, Abe F, Araki H, Okada M.J Nucl Mater, 1986; 1102: 141
[14] Lai G Y.High Temperature Corrosion of Engineering Alloys. Materials Park, OH: ASM Int, 1990: 47
[15] Gromov B F, Orlov Y I.In: Gulevsky V A ed., Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, Russia: SCC RF-OIPPE, 1999: 87
[16] Gorynin I V, Karzov G P.In: Gulevsky V A ed., Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, Russia: SCC RF-OIPPE 1999: 120
[17] Liu T, Wang C, Shen H.Corros Sci, 2013; 76: 310
[18] Liu X J, He Y Q, Cao G M, Jia T, Wu T Z, Liu Z Y.J Iron Steel Res Int, 2015; 22: 238
[19] Fu C, Kong W K, Cao G H.Surf Coat Technol, 2014; 258: 347
[20] Li Y S, Spiegel M, Shimada S.Mater Lett, 2004; 58: 3787
[21] Mesquita R A, Barbosa C A, Morales E V.Metall Mater Trans, 2011; 42A: 461
[22] Yu J, McMahon C J.Metall Trans, 1980; 11A: 277
[23] Garrison W M.Metall Trans, 1986; 17A: 669
[24] Barros J, Ros-Yanez T, Vandenbossche L.J Magn Mater, 2005; 290: 1457
[25] Gao H, Song Y Y, Zhao M J, Hu X F, Rong L J.Acta Metall Sin, 2014; 50: 1429
[25] (高恒, 宋元元, 赵明久, 胡小峰, 戎利建. 金属学报, 2014; 50: 1429
[26] Hu X Q, Xiao N M, Luo X H, Li D Z.Acta Metall Sin, 2009; 45: 553
[26] (胡小强, 肖纳敏, 罗兴宏, 李殿中. 金属学报, 2009; 45: 553)
[27] Tchizhik A A, Tchizhik T A, Tchizhik A A.J Mater Process Technol, 1998; 77: 226
[28] Bashu S A, Singh K, Rawat M S.Mater Sci Eng, 1990; A127: 7
[29] Cai G J, Andren H O, Svensson L E.Metall Mater Trans, 1997; 28A: 1417
[30] Schäfer L.J Nucl Mater, 1998; 262: 1336
[31] Carrouge D, Bhadeshia H K D H, Woollin P.Sci Technol Weld Join, 2004; 9: 377
[32] Balbaud-Célérier F, Deloffre P, Terlain A.J Phys IV France, 2002; 12(8): 177
[33] Soler L, Martin F J, Hernandez F.J Nucl Mater, 2004; 335: 174
[34] Benamati G, Fazio C, Piankova H. J Nucl Mater, 2002; 301: 23
[35] Martinelli L, Balbaud-Célérier F.Corros Sci, 2008; 50: 2523
[36] Zhang J, Li N.Oxid Met, 2005; 63: 353
[37] Martinelli L, Balbaud-Célérier F.Corros Sci, 2008; 50: 2537
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[7] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[8] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[12] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[13] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[14] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[15] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.