Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1315-1324    DOI: 10.11900/0412.1961.2015.00033
  本期目录 | 过刊浏览 |
1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究*
孙永伟1,陈继志1,2(),刘军2
2 洛阳船舶材料研究所, 洛阳 471000
STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL
Yongwei SUN1,Jizhi CHEN1,2(),Jun LIU2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2 Luoyang Ship Material Research Institute, Luoyang 471000
全文: PDF(1316 KB)   HTML
摘要: 

利用升温脱氢分析(TDS)实验研究了1000 MPa级0Cr16Ni5Mo马氏体不锈钢的氢陷阱行为. 同时, 采用慢应变速率拉伸实验(SSRT)研究了该钢缺口与光滑试样的氢脆敏感性, 并利用SEM观察了试样的断口形貌. 结果表明, 位错和晶界为该钢的主要氢陷阱, 充氢后缺口试样与光滑试样的伸长率均下降明显, 但强度变化不大. 随着氢含量的升高, 断口形貌由韧窝型韧性断裂向穿晶、准解理断裂, 甚至向沿晶断裂方式过渡. 由于C含量较少, 该钢的不可逆陷阱含量极少, 大量的可扩散氢使得该钢具有较高的氢脆敏感性. 最后利用与Eshelby等效夹杂理论有关的氢致应力模型, 验证了应力集中与氢含量之间的变化关系.

关键词 0Cr16Ni5Mo钢氢脆氢陷阱Eshelby等效夹杂    
Abstract

0Cr16Ni5Mo steel is the most popular material used for fasteners and bolts in the marine engineering equipment. With the light weight trend of equipment, the strength grades of the steel become higher. 0Cr16Ni5Mo steel combines high strength, high hardness and high fracture toughness with good ductility. However, high strength steel is prone to degradation by hydrogen, resulting in the loss of its excellent mechanical properties. And the presence of diffusible hydrogen near a notch tip is easily to cause crack propagation. The susceptibility to hydrogen embrittlement of steel is largely determined by the hydrogen diffusivity and the behaviors of hydrogen trapping in the steel. Therefore, the hydrogen trapping behaviors of 1000 MPa grade 0Cr16Ni5Mo steel have been investigated by means of thermal desorption spectroscopy (TDS). Meanwhile, the hydrogen embrittlement susceptibility of the notch and smooth specimens was evaluated by slow strain rate tests (SSRT), and the fracture morphology was also observed. The results showed that the main hydrogen traps of experimental steel was contained dislocations and grain boundaries. The elongation of hydrogen charged specimens was decreased obviously rather than tensile strength. With the increase in hydrogen concentration, the fracture surfaces of hydrogen charged specimens was displayed a transition from ductile microvoid coalescence to a mixed morphology of dimples, quasi-cleavage and intergranular features. The steel had little irreversible hydrogen due to less C content, and had much susceptibility with reversible hydrogen contained. The model of hydrogen induced stress was calculated on basis of Eshelby equivalent inclusion, validating the relationship between stress concentration and hydrogen concentration.

Key words0Cr16Ni5Mo steel    hydrogen embrittlement    hydrogen trapping    Eshelby equivalent inclusion
    

引用本文:

孙永伟,陈继志,刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究*[J]. 金属学报, 2015, 51(11): 1315-1324.
Yongwei SUN, Jizhi CHEN, Jun LIU. STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL. Acta Metall Sin, 2015, 51(11): 1315-1324.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00033      或      https://www.ams.org.cn/CN/Y2015/V51/I11/1315

图1  慢应变速率拉伸实验试样形状和尺寸示意图
图2  0Cr16Ni5Mo钢淬火后793.15 K回火的OM像和TEM像
图3  充氢96 h后的0Cr16Ni5Mo钢经不同加热速率加热后所获得的TDS曲线及拟合数据
图4  室温下不同氢含量的0Cr16Ni5Mo钢缺口试样的SSRT曲线
图5  不同氢含量的0Cr16Ni5Mo钢缺口试样SSRT拉伸断口的SEM像
图6  室温下不同氢含量的0Cr16Ni5Mo钢光滑试样的SSRT曲线
图7  室温下0Cr16Ni5Mo钢光滑试样经SSRT后的塑性与氢含量的关系
图8  不同氢含量0Cr16Ni5Mo钢光滑试样的SSRT断口的SEM像
图9  Eshelby模型示意图
图10  无约束0Cr16Ni5Mo钢缺口试样根部的应力集中程度随钢中初始状态下的氢浓度的变化关系
[1] Kuduzovi? A, Poletti M C, Sommitsch C, Domankova M, Mitsche S, Kienreich R. Mater Sci Eng, 2014; A590: 66
[2] Tian Y, Wang M Q, Li J X, Shi J, Hui W J, Dong H. Acta Metall Sin, 2008; 44: 403 (田 野, 王毛球, 李金许, 时 捷, 惠卫军, 董 瀚. 金属学报, 2008; 44: 403)
[3] Li H L, Hui W J, Wang Y B, Dong H, Weng Y Q, Chu W Y. Acta Metall Sin, 2001; 37: 512 (李会录, 惠卫军, 王燕斌, 董 瀚, 翁宇庆, 褚武扬. 金属学报, 2001; 37: 512)
[4] Xiao J M. Acta Metall Sin, 1997; 33: 113 (肖纪美. 金属学报, 1997; 33: 113)
[5] Chu W Y,Qiao L J,Li J X,Su Y J,Yan Y,Bai Y,Ren X C,Huang H Y. Hydrogen Embrittlement and Stress Corrosion Cracking. Beijing: Science Press, 2013: 557 (褚武扬,乔利杰,李金许,宿彦京,岩 雨,白 洋,任学冲,黄海友. 氢脆和应力腐蚀. 北京: 科学出版社, 2013: 557)
[6] Hui W J,Weng Y Q,Dong H. The Steels of High-Strength Fasteners. Beijing: Metallurgical Industry Press, 2009: 64 (惠卫军,翁宇庆,董 瀚. 高强度紧固件用钢. 北京: 冶金工业出版社, 2009: 64)
[7] Ham J, Jang Y, Lee G, Kim B, Rhee K, Cho C. Mater Sci Eng, 2013; A581: 83
[8] Fransplass H, Langseth M, Hopperstad O S. Int J Mechani Sci, 2011; 53: 946
[9] Chu W Y, Li J X, Huang Z H. Corrosion, 1999; 55: 892
[10] Troiano A R. Trans ASM, 1960; 52: 54
[11] Oriani R A. Acta Metall, 1970; 18: 147
[12] Thomans D. Acta Metall Mater, 1994; 42: 2043
[13] Birnbaum H K, Sofronis P. Mater Sci Eng, 1994; A176: 191
[14] Yokota T, Shiraga T. ISIJ Int, 2003; 43: 534
[15] Kissinger H E. Anal Chem, 1982; 29: 135
[16] Gu J L, Chang K D, Fang H S, Bai B Z. ISIJ Int, 2002; 42: 1560
[17] Pressouyre G M. Metall Trans, 1979; 10A: 1571
[18] Escobar D P, Verbeken K, Duprez L. Mater Sci Eng, 2012; A551: 50
[19] Hirth J P. Metall Trans, 1980; 11A: 861
[20] Sofronis P, Birnbaum H K. J Mech Phys Solids, 1995; 43: 49
[21] Nabarro F R N. Proc Roy Soc, 1940; 175A: 519
[22] Li J C M, Oriani R A, Darken L S. Z Physik Chem Neue Folge, 1966; 49: 271
[23] Sofronis P, McMeeking R M. J Mech Phys Solids, 1989; 37: 317
[24] Chateau J P, Delafosse D, Magnin T. Acta Mater, 2002; 50: 1507
[25] Eshelby J D. Proc Roy Soc, 1957; 241A: 376
[26] Li H L, Chu W Y, Gao K W, Qiao L J. Acta Metall Sin, 2002; 38: 849 (李会录, 褚武扬, 高克玮, 乔利杰. 金属学报, 2002; 38: 849)
[27] Hardie D, Liu S E. Corros Sci, 1996; 38: 721
[28] Nagao A, Smith C D, Dadfarnia M, Sofronis P, Robertson I M. Proce Mater Sci, 2014; 3: 1700
[29] Robertson I M. Eng Fract Mech, 1999; 64: 649
[30] Abhay K J, Narayanan P R, Sreekumar K, Mittal M C, Ninan K N. Eng Fail Analy, 2008; 15: 431
[1] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[2] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[3] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[4] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[5] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[6] 闫二虎, 李新中, 唐平, 苏彦庆, 郭景杰, 傅恒志. Nb-Ti-Co氢分离合金近共晶点处的显微组织及其渗氢性能*[J]. 金属学报, 2014, 50(1): 71-78.
[7] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[8] 王艳飞 巩建鸣 蒋文春 姜勇 唐建群. 基于内聚力模型的AISI4135高强钢氢致滞后断裂数值模拟[J]. 金属学报, 2011, 47(5): 594-600.
[9] 李阳 张永健 惠卫军 王毛球 董瀚. 1500 MPa级高强度钢42CrMoVNb的氢吸附行为[J]. 金属学报, 2011, 47(4): 423-428.
[10] 李依依 范存淦 戎利建 闫德胜 李秀艳. 抗氢脆奥氏体钢及抗氢铝[J]. 金属学报, 2010, 46(11): 1335-1346.
[11] 张建; 李秀艳; 赵明久; 戎利建 . 晶界相对Fe-Ni-Cr奥氏体合金氢脆的影响[J]. 金属学报, 2008, 44(9): 1095-1098 .
[12] 熊良银; 刘实; 王隆保; 戎利建 . Nb-Ti-Ni 合金的显微组织与氢渗透性能[J]. 金属学报, 2008, 44(7): 781-785 .
[13] 田野; 王毛球; 李金许; 时捷; 惠卫军; 董瀚 . 1500MPa级40CrNi3MoV钢的氢脆敏感性[J]. 金属学报, 2008, 44(4): 403-408 .
[14] 许峰云; 白秉哲; 方鸿生 . 马氏体岛的体积分数、形状及强度对粒状组织钢力学性能的影响[J]. 金属学报, 2008, 44(10): 1183-1187 .
[15] 张建; 李秀艳; 戎利建; 郑永男; 朱升云 . Fe-Ni基合金氢脆的正电子湮没寿命谱研究[J]. 金属学报, 2006, 42(5): 469-473 .