Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1325-1332    DOI: 10.11900/0412.1961.2015.00077
  本期目录 | 过刊浏览 |
HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系*
彭志方1(),任文1,杨超2,陈方玉3,刘鸿国4,彭芳芳5,梅青松1
2 江苏方天电力技术有限公司, 南京 211102
3 武汉钢铁(集团)公司研究院检测所, 武汉 430080
4 神华(福建)能源有限责任公司, 福州 350004
5 东方电气集团东方锅炉股份有限公司, 自贡 643000
RELATIONSHIP BETWEEN THE EVOLUTION OF PHASE PARAMETERS OF GRAIN BOUNDARY M23C6 AND EMBRITTLEMENT OF HR3C SUPER-HEATER TUBES IN SERVICE
Zhifang PENG1(),Wen REN1,Chao YANG2,Fangyu CHEN3,Hongguo LIU4,Fangfang PENG5,Qingsong MEI1
1 School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072
2 Jiangsu Frontier Electric Technology Co. Ltd., Nanjing 211102
3 Research Institute of Wuhan Iron and Steel (Group) Corp., Wuhan 430080
4 Shenhua (Fujian) Energy Co. Ltd., Fuzhou 350004
5 Dongfang Boiler Group Co. Ltd., Zigong 643000
引用本文:

彭志方,任文,杨超,陈方玉,刘鸿国,彭芳芳,梅青松. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系*[J]. 金属学报, 2015, 51(11): 1325-1332.
Zhifang PENG, Wen REN, Chao YANG, Fangyu CHEN, Hongguo LIU, Fangfang PENG, Qingsong MEI. RELATIONSHIP BETWEEN THE EVOLUTION OF PHASE PARAMETERS OF GRAIN BOUNDARY M23C6 AND EMBRITTLEMENT OF HR3C SUPER-HEATER TUBES IN SERVICE[J]. Acta Metall Sin, 2015, 51(11): 1325-1332.

全文: PDF(1141 KB)   HTML
摘要: 

研究了HR3C钢不同运行态过热器管样晶界碳化物M23C6相参量(面积分数 ? M 23 C 6 和等效宽度W)的变化与脆化的关系. 利用ASTM E112规范奥氏体钢晶粒度评级卡片测算出各级别晶粒度(GL)对应的二维图像晶界总周长(Lgb), 并拟合出两者的关系Lgb(GL); 利用各管样的扫描电镜二次电子(SEM-SE)像, 得到了对应的 ? M 23 C 6 及W, 从而建立了W与GL? M 23 C 6 的关系(W(GL, ? M 23 C 6 )); 再结合Charpy冲击实验, 获得了冲击值(aKV)与W的关系(aKV (W)); 此外, 利用纳米压痕仪测定了晶界的弹性模量(Er). 结果表明, 所有管样冲击断口均呈沿晶断裂形貌; 当 ? M 23 C 6 一定时, GL越小, W越大, 其Er也越大, 对应的aKV越小, 即晶界脆化倾向越大. 揭示了晶界M23C6片等效宽度的增大(粗化)导致脆化的实质.

关键词 HR3C钢脆化M23C6等效宽度Charpy冲击值    
Abstract

The relationship of the evolution of the phase parameters (area fraction ? M 23 C 6 and equivalent width W ) of grain boundary M23C6 plates with the embrittlement of HR3C super-heater tube samples in service was studied. Based on the ASTM E112 standard charts, the total length of two dimensional austenite grain boundaries (Lgb) corresponding to each grain size number (GL) was determined in the observed area of the metallographic images and expressed as Lgb (GL). Making use of the SEM-SE images of the samples, the ? M 23 C 6 and W were determined. The relationships of W with GL and ? M 23 C 6 were established as W(GL, ? M 23 C 6 ). Combined with the result from a Charpy impact test, the function of the impact value (aKV) as the W was obtained. In addition, the grain boundary elastic modulus (Er) was measured by a nano-hardness test. The result shows that intergranular fracture occurred on all the room temperature impact test specimens taken from the super-heater tubes exposed under the operating conditions. The W was increased with the decrease of GL and the increase of Er at a constant ? M 23 C 6 , causing a corresponding decrease of aKV, and hence promoting the embrittlement of the HR3C super-heater tubes. The related mechanism for the intergranular fracture caused by the increase of the equivalent width W of grain boundary carbides (carbide coarsening) can be explained through the application of the proposed method.

Key wordsHR3C steel    embrittlement    M23C6    equivalent width    Charpy impact value
    
Sample Service condition Dimension / mm
Steam temperature / ℃ Steam pressure / MPa Service time / h Diameter Wall thickness
SH1.6 610~620 27.0~28.0 16000 63.5 11.5
SH3.2 600~610 25.0~26.5 32000 57.0 14.5
SH4.0 600~610 25.0~26.5 40000 57.0 14.5
SH5.6 520~560 24.0~25.0 56000 48.5 8.0
表1  HR3C钢过热器管的运行条件及其尺寸
Sample C Si Mn P S Cr Ni Nb N Fe
SH1.6 0.068 0.385 1.18 0.015 0.0075 25.06 19.86 0.391 0.250 Bal.
SH3.2 0.055 0.425 1.19 0.017 0.0013 25.66 19.66 0.438 0.258 Bal.
SH4.0 0.071 0.397 1.17 0.016 0.0045 24.71 19.63 0.402 0.250 Bal.
SH5.6 0.063 0.420 1.19 0.026 0.0090 25.68 20.06 0.410 0.230 Bal.
ASTM 0.040~0.100 ≤0.750 ≤2.00 ≤0.030 ≤0.030 24.00~26.00 17.00~23.00 0.20~0.60 0.150~0.350 Bal.
表2  HR3C钢过热器管样的化学成分
图1  HR3C钢过热器管样的冲击断口SEM-SE像
图2  HR3C钢过热器管样的OM像
图3  HR3C钢过热器管样显微组织的SEM-SE像
图4  奥氏体钢晶界总周长(Lgb)与奥氏体晶粒度(GL)的关系
图5  不同方法确定的HR3C过热器管样晶粒度级别GM与GL的对比
图6  晶界M23C6片的等效宽度(W)随其面积分数(? M 23 C 6 )和晶粒度(GL)的变化
图7  HR3C管样的冲击值(aKV)与晶界M23C6片的等效宽度(W)
[1] Yang F,Zhang Y L,Ren Y N,Li W M. New Heat-Resistant Steels Welding. Beijing: China Electric Power Press, 2006: 143 (杨 富,章应霖,任永宁,李为民. 新型耐热钢焊接. 北京: 中国电力出版社, 2006: 143)
[2] Iseda A, Okada H, Semba H, Igarashi M. Energy Mater, 2007; 2(4): 199
[3] Fang Y Y, Zhao J, Li X N. Acta Metall Sin, 2010; 46: 844 (方园园, 赵 杰, 李晓娜. 金属学报, 2010; 46: 844)
[4] Komai N,Igarashi M,Minami Y,Mimura H,Masuyama F,Prager M,Boyles P R. In: American Society of Mechanical Engineers ed.,2007 Proc ASME Pressure Vessels and Piping Conference-8th Int Conf on Creep and Fatigue at Elevated Temperatures-CREEP, New York: ASME, 2007: 203
[5] Hu P. Electr Power Constr, 2005; 26(6): 26 (胡 平. 电力建设, 2005; 26(6): 26)
[6] Jiang Z S, Dong W G, Mao G G. Electr Power Constr, 2007; 28(8): 7 (江哲生, 董卫国, 毛国光. 电力建设, 2007; 28(8): 7)
[7] Sun Y Z. Electr Power Constr, 2003; 24(9): 11 (孙叶柱. 电力建设, 2003; 24(9): 11)
[8] Yin Z, Cai H, Liu H G. Proc Chin Soc Elec Eng, 2011; 31: 103 (殷 尊, 蔡 晖, 刘鸿国. 中国电机工程学报, 2011; 31: 103 )
[9] Du B S, Wei Y Z, Zhang Z W, Li X M, Liu R. Trans Mater Heat Treatment, 2014; 35(12): 84 (杜宝帅, 魏玉忠, 张忠文, 李新梅, 刘 睿. 材料热处理学报, 2014; 35(12): 84 )
[10] Okada H,Igarashi M,Yamamoto S,Miyahara O,Iseda A,Komai N,Masuyama F. In: American Society of Mechanical Engineers ed., 2007 Proc ASME Pressure Vessels and Piping Conference-8th Int Conf on Creep and Fatigue at Elevated Temperatures-CREEP, New York: ASME, 2007: 181
[11] Li T J, Liu F G, Fan C X, Yao B Y. Hot Working Technol, 2010; 39(14): 43 (李太江, 刘福广, 范长信, 姚兵印. 热加工工艺, 2010; 39(14): 43 )
[12] Bai X, Pan J, Chen G, Liu J, Wang J, Zhang T, Tang W. Mater Sci Technol, 2014; 30(2): 205
[13] Zhen Z J. Boiler Technol, 2011; 42(4): 46 (郑子杰. 锅炉技术, 2011; 42(4): 46 )
[14] Gao J Q, Hong J, Zhou Y D, Toda Y, Wang Q J, Liu J L. Metall Anal (Suppl.: Phys), 2012; 32: 172 (高加强, 洪 杰, 周冶东, 户田佳明, 王起江, 刘俊亮. 冶金分析(增刊: 物理分册), 2012; 32: 172)
[15] Peng B C, Zhang H X, Hong J, Gao J Q, Wang Q J, Zhang H Q. Mater Sci Eng, 2010; A527:1957
[16] Peng Z F, Peng F F, Chen F Y. In: Gandy D, Shingledecker J eds., Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference (EPRI 2013), Waikoloa, Hawaii, USA: ASM International, 2013: 1151
[17] Shen Q, Liu H G, Tang L Y. Electr Power Constr, 2009; 30(9): 62 (沈 琦, 刘鸿国, 唐丽英. 电力建设, 2009; 30(9): 62)
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[3] 张天慈, 王海涛, 李正操, SCHUT Henk, 张征明, 贺铭, 孙玉良. 国产RPV钢铁离子辐照脆化行为的正电子湮灭研究[J]. 金属学报, 2018, 54(4): 512-518.
[4] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
[5] 王永强,杨滨,李娜,林苏华,孙立. σ相在核电一回路主管道不锈钢中的脆化机理*[J]. 金属学报, 2016, 52(1): 17-24.
[6] 王慧,程从前,赵杰,杨鸷. 超超临界锅炉用HR3C钢的σ 相析出行为研究*[J]. 金属学报, 2015, 51(8): 920-924.
[7] 莫文林, 张旭, 陆善平, 李殿中, 李依依. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*[J]. 金属学报, 2015, 51(2): 230-238.
[8] 强少明,江来珠,李劲,刘天伟,吴艳萍,蒋益明. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性*[J]. 金属学报, 2015, 51(11): 1349-1355.
[9] 李正操, 陈良. 核能系统压力容器辐照脆化机制及其影响因素[J]. 金属学报, 2014, 50(11): 1285-1293.
[10] 方园园 赵杰 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46(7): 844-849.
[11] 胡正飞; 杨振国 . 长期高温时效F12耐热合金钢中碳化物形态和组分变化[J]. 金属学报, 2003, 39(2): 131-135 .
[12] 高惠临; 董玉华; R.W.Hendricks . 超低碳QT钢焊接二次热循环的组织转变与局部脆化[J]. 金属学报, 2001, 37(1): 34-38 .
[13] 李碚;吴双霞;滕云;刘翠兰;颜玉新;赵增祺;伍虹. 碳和钇对Fe-Cr-Al合金500℃时效脆化的影响[J]. 金属学报, 1996, 32(9): 926-932.
[14] 叶长江;李铁藩. 预氧化对Ni_3Al合金中温塑性的影响[J]. 金属学报, 1996, 32(3): 289-293.
[15] 车晓舟;孙宝德;胡赓祥;曹兴国;戴礼智. 非晶态Fe_(79)B_(16)Si_5合金退火脆化机制研究[J]. 金属学报, 1996, 32(2): 202-206.